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11.1.1 Introduction historique

Thermodynamique avant Eckart et Stückelberg

Avant 1940-1950 :

1 Thermostatique : états d’équilibre

2 Quasi-thermostatique : processus entre des états
d’équilibre

Thermodynamique depuis Stückelberg

Après 1950 :

1 Thermodynamique : évolution temporelle des états

2 Equations de continuité : description en termes
d’équations différentielles locales

Feynman à propos de Stückelberg

Cern 1965 :

“He did the work and walks alone toward the
sunset ; and, here I am, covered in all the glory,
which rightfully should be his.”

Eckart

Stückelberg
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11.1.2 Système global et système local

Système
 global

Système
  local

x

Macroscopique

Microscopique

Système global :

1 Milieu continu de points {x }
2 Inéquilibre

3 Inhomogène

4 Non-uniforme

Système local :

1 Point x

2 Equilibre

3 Homogène

4 Uniforme
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11.1.2 Système global et système local

Système global :

1 Variable d’état extensive dynamique : quantité de mouvement P (t)

2 Variable d’état extensive thermique : entropie S (t)

3 Autres variables d’état extensives : X1 (t) , . . . , Xn (t)

4 Etat : {P (t) , S (t) , X1 (t) , . . . , Xn (t) }
5 Fonction d’état :

F (t) ≡ F
(
P (t) , S (t) , X1 (t) , . . . , Xn (t)

)
(11.1)

Système local :

1 Champ d’état densitaire dynamique : densité de quant. de mvt p (x, t)

2 Champ d’état densitaire thermique : densité d’entropie s (x, t)

3 Autres champs d’état densitaires : x1 (x, t) , . . . , xn (x, t)

4 Etat : {p (x, t) , s (x, t) , x1 (x, t) , . . . , xn (x, t) }
5 Densité de fonction d’état :

f (x, t) ≡ f
(
p (x, t) , s (x, t) , x1 (x, t) , . . . , xn (x, t)

)
(11.5)
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11.1.3 Lien entre système global et système local

1 Variable d’état extensive dynamique : quantité de mouvement (11.2)

P (t) =

∫
V (t)

dP (x, t) =

∫
V (t)

dV (x)
dP (x, t)

dV (x)
=

∫
V (t)

dV (x) p (x, t)

2 Variable d’état extensive thermique : entropie (11.3)

S (t) =

∫
V (t)

dS(x, t) =

∫
V (t)

dV (x)
dS(x, t)

dV (x)
=

∫
V (t)

dV (x) s (x, t)

3 Autres variables d’état extensives : (11.4) où i = 1, . . . , n

Xi (t) =

∫
V (t)

dXi(x, t) =

∫
V (t)

dV (x)
dXi(x, t)

dV (x)
=

∫
V (t)

dV (x) xi (x, t)

4 Fonctions d’état extensives scalaires : (11.6)

F (t) =

∫
V (t)

dF (x, t) =

∫
V (t)

dV (x)
dF (x, t)

dV (x)
=

∫
V (t)

dV (x) f (x, t)
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11.1.4 Variation de la fonction d’état scalaire

Variation de la fonction d’état scalaire :

δF (t) =

∫
V (t)

dV (x) δf (x, t) +

∮
S(t)

δdV (x, t) f (x, t) (11.7)

1 Variation de volume infinitésimal :

δdV (x, t)︸ ︷︷ ︸
volume

= dS(x)︸ ︷︷ ︸
surface

· δr (x, t)︸ ︷︷ ︸
déplacement

(11.8)

2 Dérivée temporelle de la fonction d’état scalaire :

Ḟ (t) ≡ dF (t)

dt
= lim
δt→0

δF (t)

δt
3 Dérivée temporelle de la densité de fonction d’état scalaire :

∂t f (x, t) ≡
∂f (x, t)

∂t
= lim
δt→0

δf (x, t)

δt
(11.9)

4 Champ de vitesse :

v (x, t) ≡ lim
δt→0

δr (x, t)

δt

Dérivée temporelle de la fonction d’état scalaire :

Ḟ (t) =

∫
V (t)

dV (x) ∂t f (x, t) +

∮
S(t)

dS(x) · v (x, t) f (x, t) (11.10)
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11.1.5 Dérivée temporelle de la fonction d’état - mathématique

Dérivée temporelle de la fonction d’état scalaire :

Ḟ (t) =

∫
V (t)︸ ︷︷ ︸

volume

dV (x) ∂t f (x, t) +

∮
S(t)︸︷︷︸

surface

dS(x) · v (x, t) f (x, t) (11.10)

Théorème de la divergence :

L’intégrale d’une fonction sur la surface S (t) est égale à l’intégrale de la
divergence de cette fonction sur le volume V (t) :

Ḟ (t) =

∫
V (t)

dV (x)
[
∂t f (x, t) + ∇ ·

(
f (x, t)v (x, t)

)]
(11.11)

Divergence : coordonnées cartésiennes

∇ ·
(
f (x, t)v (x, t)

)
= (∂1, ∂2, ∂3)

f (x, t) v1 (x, t)
f (x, t) v2 (x, t)
f (x, t) v3 (x, t)


=

3∑
i=1

∂i

(
f (x, t) vi (x, t)

)
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11.1.6 Dérivée temporelle de la fonction d’état - physique

Equation de bilan de la fonction d’état scalaire :

Ḟ (t) = ΣF (t) + IF (t) (1.12)

Causes physiques de la variation temporelle
de la fonction d’état scalaire :

1 Densité de source σf (x, t) :
production interne au volume V (t)

2 Densité de courant jf (x, t) :
flux à travers la surface S (t)

Dérivée temporelle de la fonction d’état scalaire :

Ḟ (t) =

∫
V (t)

dV (x) σf (x, t)︸ ︷︷ ︸
ΣF (t)

−
∮
S(t)

dS(x) · jf (x, t)︸ ︷︷ ︸
IF (t)

(11.17)

Théorème de la divergence :

L’intégrale d’une fonction sur la surface S (t) est égale à l’intégrale de la
divergence de cette fonction sur le volume V (t) :

Ḟ (t) =

∫
V (t)

dV (x)
[
σf (x, t)− ∇ · jf (x, t)

]
(11.18)

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus 13 / 79



11.1.7 Equation de continuité - référentiel fixe

Dérivée temporelle de la fonction d’état scalaire - mathématique :

Ḟ (t) =

∫
V (t)

dV (x)
[
∂t f (x, t) + ∇ ·

(
f (x, t)v (x, t)

)]
(11.11)

Dérivée temporelle de la fonction d’état scalaire - physique :

Ḟ (t) =

∫
V (t)

dV (x)
[
σf (x, t)− ∇ · jf (x, t)

]
(11.18)

Les expressions mathématique et physique de la dérivée temporelle de la
fonction d’état scalaire Ḟ (t) doivent être égales en tout point x. En
identifiant les intégrants des équations (11.11) et (11.18), on obtient
l’équation de continuité locale de la fonction d’état scalaire F (t) décrite
par rapport à un référentiel fixe dans l’espace :

∂t f (x, t) + ∇ ·
(
f (x, t)v (x, t)

)
= σf (x, t)− ∇ · jf (x, t) (11.19)

1 f (x, t)v (x, t) : densité de courant convectif

mouvement du centre de masse local du fluide par rap. au référentiel fixe

2 jf (x, t) : densité de courant conductif

mouvement relatif du fluide par rapport au réf. du centre de masse local
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11.1.8 Equation de continuité - référentiel local du fluide

Equation de continuité de la fonction d’état scalaire dans un
référentiel fixe :

∂t f (x, t) + ∇ ·
(
f (x, t)v (x, t)

)
= σf (x, t)− ∇ · jf (x, t) (11.19)

Divergence du courant de la densité de fonction d’état :

∇ · jf = (∂1, ∂2, ∂3)

jf 1

jf
2

jf
3

 =
3∑

i=1

∂i jf
i (11.20)

Dérivée temporelle de la densité de fonction d’état dans le
référentiel local du fluide :

ḟ (x, t) = ∂t f (x, t) + (v (x, t) ·∇) f (x, t) (11.21)

Terme convectif :

v ·∇ = (v1, v2, v3)

∂1

∂2

∂3

 =
3∑

i=1

vi ∂
i (11.22)
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11.1.8 Equation de continuité - référentiel local du fluide

Equation de continuité de la fonction d’état scalaire dans un
référentiel fixe :

∂t f (x, t) + ∇ ·
(
f (x, t)v (x, t)

)
= σf (x, t)− ∇ · jf (x, t) (11.19)

Dérivée temporelle de la densité de fonction d’état dans le
référentiel local du fluide :

ḟ (x, t) = ∂t f (x, t) + (v (x, t) ·∇) f (x, t) (11.21)

Identité vectorielle : (11.23)

∇ ·
(
f (x, t)v (x, t)

)
= f (x, t) ∇ · v (x, t) + (v (x, t) ·∇) f (x, t)

Divergence de la vitesse :

∇ · v = (∂1, ∂2, ∂3)

v1

v2

v3

 =
3∑

i=1

∂i v
i (11.26)

Equation de continuité de la fonction d’état scalaire dans le
référentiel local du fluide : (11.21) et (11.23) dans (11.19)

ḟ (x, t) + (∇ · v (x, t)) f (x, t) + ∇ · jf (x, t) = σf (x, t) (11.24)
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11.1.9 Equations de continuité - scalaire et vectorielle

Equation de continuité de la fonction d’état scalaire :

ḟ (x, t) + (∇ · v (x, t)) f (x, t) + ∇ · jf (x, t) = σf (x, t) (11.24)

Généralisation de l’équation de continuité de la fonction d’état
scalaire à la fonction d’état vectorielle :

1 Fonction d’état : scalaire → vectorielle : F (t) → F (t)

2 Densité de fonction d’état : scalaire → vectorielle : f (x, t) → f (x, t)

3 Densité de source : scalaire → vectorielle : σf (x, t) → σf (x, t)

4 Densité de courant : vectorielle → tensorielle : jf (x, t) → jf (x, t)

5 Divergence : scalaire → vectorielle : ∇ · jf (x, t) → ∇ · jf (x, t)

Equation de continuité de la fonction d’état vectorielle :

ḟ (x, t) + (∇ · v (x, t)) f (x, t) + ∇ · jf (x, t) = σf (x, t) (11.25)
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11.1.9 Equations de continuité - scalaire et vectorielle

Equation de continuité de la fonction d’état scalaire :

ḟ (x, t) + (∇ · v (x, t)) f (x, t) + ∇ · jf (x, t) = σf (x, t) (11.24)

Divergence salaire du courant de la densité de fonction d’état :

∇ · jf = (∂1, ∂2, ∂3)

jf 1

jf
2

jf
3

 =
3∑

i=1

∂i jf
i (11.20)

Equation de continuité de la fonction d’état vectorielle :

ḟ (x, t) + (∇ · v (x, t)) f (x, t) + ∇ · jf (x, t) = σf (x, t) (11.25)

Divergence vectorielle du courant de la densité de fonction d’état :

∇ · jf = (∂1, ∂2, ∂3)

jf 1
1 jf

1
2 jf

1
3

jf
2
1 jf

2
2 jf

2
3

jf
3
1 jf

3
2 jf

3
3


=

(
3∑

i=1

∂i jf
i
1,

3∑
i=1

∂i jf
i
2,

3∑
i=1

∂i jf
i
3

) (11.27)
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11.1.10 Convention de sommation d’Einstein

Convention de sommation d’Einstein : suppression du signe
∑

On somme les indices et exposants identiques :

1 Indice de colonne

2 Exposant de ligne

Grandeurs géométriques : en dimensions 1 (vecteur) et 2 (tenseur)

1 Vecteur colonne x : représenté dans une base de R3 par une colonne

x =

x1

x2

x3


2 Vecteur ligne x : représenté dans une base de R3 par une ligne

x = (x1, x2, x3)

3 Tenseur x : représenté dans une base de R3 par un tableau (matrice)

x =

x1
1 x1

2 x1
3

x2
1 x2

2 x2
3

x3
1 x3

2 x3
3


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11.1.11 Produits en coordonnées cartésiennes

1 Produit scalaire d’un vecteur ligne x avec un vecteur colonne y :

x · y = (x1, x2, x3)

y1

y2

y3

 = x1 y
1 + x2 y

2 + x3 y
3 ≡ xi yi (11.12)

Vecteur ligne gradient ∇ :

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
≡ (∂1, ∂2, ∂3)

Divergence de la vitesse v :

∇ · v = (∂1, ∂2, ∂3)

v1

v2

v3

 = ∂1 v
1 + ∂2 v

2 + ∂3 v
3 ≡ ∂i vi

Divergence de la densité de courant vectoriel jf :

∇ · jf = (∂1, ∂2, ∂3)

j
1
f

j2
f

j3
f

 = ∂1 j
1
f + ∂2 j

2
f + ∂3 j

3
f ≡ ∂i jif
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11.1.11 Produits en coordonnées cartésiennes

2 Produit scalaire d’un tenseur x avec un vecteur colonne y :

x · y =

x1
1 x1

2 x1
3

x2
1 x2

2 x2
3

x3
1 x3

2 x3
3

y1

y2

y3

 ≡
x1

i y
i

x2
i y

i

x3
i y

i

 (11.13)

Produit scalaire du tenseur des contraintes τ et de la vitesse v :

τ · v =

τ1
1 τ1

2 τ1
3

τ2
1 τ2

2 τ2
3

τ3
1 τ3

2 τ3
3

v1

v2

v3

 ≡
τ1

i v
i

τ2
i v
i

τ3
i v
i


3 Produit scalaire d’un vecteur ligne x avec un tenseur y :

x · y = (x1, x2, x3)

y1
1 y1

2 y1
3

y2
1 y2

2 y2
3

y3
1 y3

2 y3
3

 ≡ (xi yi1, xi yi2, xi yi3) (11.14)

Divergence de la densité de courant tensorielle jf

∇ · jf = (∂1, ∂2, ∂3)

jf 1
1 jf

1
2 jf

1
3

jf
2
1 jf

2
2 jf

2
3

jf
3
1 jf

3
2 jf

3
3

 ≡ (∂i jf i1, ∂i jf i2, ∂i jf i3)
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11.1.11 Produits en coordonnées cartésiennes

4 Trace du produit scalaire d’un tenseur x avec un tenseur y :

x : y = tr

x1
1 x1

2 x1
3

x2
1 x2

2 x2
3

x3
1 x3

2 x3
3

y1
1 y1

2 y1
3

y2
1 y2

2 y2
3

y3
1 y3

2 y3
3


≡ tr

x1
j y

j
1 x1

j y
j
2 x1

j y
j
3

x2
j y

j
1 x2

j y
j
2 x2

j y
j
3

x3
j y

j
1 x3

j y
j
2 x3

j y
j
3

 ≡ xij yji
(11.15)

5 Produit tensoriel d’un vecteur colonne x avec un vecteur ligne y :

x⊗ y ≡ xy =

x1

x2

x3

 (y1, y2, y3) =

x1 y1 x1 y2 x1 y3

x2 y1 x2 y2 x2 y3

x3 y1 x3 y2 x3 y3


Tenseur gradient de vitesse ∇v :

∇⊗ v ≡∇v =

∂1

∂2

∂3

 (v1, v2, v3) =

∂1 v1 ∂1 v2 ∂1 v3

∂2 v1 ∂2 v2 ∂2 v3

∂3 v1 ∂3 v2 ∂3 v3

 (11.16)
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11.2 Système thermodynamique : milieu continu
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11.2.1 Champs d’état et fonctions de champs d’état

Système thermodynamique : milieu continu constitué de r substances
chimiques électriquement chargées en mouvement.

Champs d’état :

1 p (x, t) : densité de quantité de mouvement

2 s (x, t) : densité d’entropie

3 {nA (x, t) } : densités de substances chimiques où A = 1, . . . , r

4 q (x, t) : densité de charge électrique

Etat :
{
p (x, t) , s (x, t) , {nA (x, t) }, q (x, t)

}
≡
{
p, s, {nA }, q

}
Fonctions de champs d’état :

1 v (p, s, {nA }, q) : vitesse

2 e (p, s, {nA }, q) : densité d’énergie

3 m (s, {nA }, q) : densité de masse

4 u (s, {nA }, q) : densité d’énergie interne
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11.2.2 Densités de source

1 Quantité de mouvement : premier principe (translation)

σp =
∑

f ext (11.35)

où f ext est une densité de force extérieure.

2 Entropie : deuxième principe (évolution)

σs > 0 (11.28)

3 Quantité de substance A : (réactions chimiques a = 1, . . . , n)

σA =
n∑

a=1

ωa νaA (11.30)

où ωa est la densité de vitesse de la réaction chimique a et νaA est le
coefficient stoechiométrique de la substance A dans la réaction chimique
a.

4 Charge électrique : loi de conservation de la charge électrique

σq = 0 (11.32)
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11.2.3 Densités de courant

1 Quantité de mouvement :

jp = − τ (11.36)

où τ est le tenseur des contraintes mécaniques, représenté par une
matrice symétrique 3× 3 (démontré en application 11.5.2).

Divergence vectorielle du tenseur des contraintes :

∇ · jp = −∇ · τ

Vecteur ligne : convention de sommation d’Einstein

∇ · τ = (∂1, ∂2, ∂3)

τ1
1 τ1

2 τ1
3

τ2
1 τ2

2 τ2
3

τ3
1 τ3

2 τ3
3

 =
(
∂i τ

i
1, ∂i τ

i
2, ∂i τ

i
3

)
(11.38)

2 Charge électrique :

j = jq + q v (11.34)

où la densité de courant électrique j par rapport au référentiel fixe est la
somme de la densité de courant électrique convectif q v et de la densité
de courant électrique conductif jq.
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11.2.4 Equations de continuité - champs d’état

1 Quantité de mouvement : f ≡ p et jp = − τ et σp =
∑
f ext

ṗ+ (∇ · v) p− ∇ · τ =
∑

f ext (11.37)

2 Entropie : f ≡ s et σs > 0

ṡ+ (∇ · v) s+ ∇ · js = σs > 0 (11.29)

3 Quantité de substance chimique A : f ≡ nA et σA =
∑n

a=1 ωa νaA

ṅA + (∇ · v) nA + ∇ · jA =
n∑

a=1

ωa νaA (11.31)

4 Charge électrique : f ≡ q et σq = 0

q̇ + (∇ · v) q + ∇ · jq = 0 (11.33)
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11.2.5 Théorème du centre de masse

Equation de continuité de la quantité de mouvement :

ṗ+ (∇ · v) p− ∇ · τ =
∑

f ext (11.37)

Relation constitutive de la mécanique :

p = m (s, {nA}, q)v (p, s, {nA}, q) ≡ mv (11.39)

Equation de continuité de la quantité de mvt : (11.39) dans (11.37)

mv̇ +
(
ṁ+ (∇ · v) m

)
v =

∑
f ext + ∇ · τ (11.40)

qui doit être invariant du choix de référentiel d’inertie par invariance
galiléenne. Ainsi, le terme entre parenthèses doit s’annuler, ce qui donne
l’équation de continuité de la masse :

ṁ+ (∇ · v) m = 0 (11.41)

Théorème du centre de masse : (11.41) dans (11.40)

mv̇ =
∑

f ext + ∇ · τ (11.42)
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11.2.6 Equation de continuité de l’énergie

Densité de source d’énergie : densité de puissance

σe =
∑

f ext · v (11.43)

Equation de continuité de l’énergie : f ≡ e et σe =
∑
f ext · v

ė+ (∇ · v) e+ ∇ · je =
∑

f ext · v (11.44)

Densité d’énergie : cinétique et interne

e (p, s, {nA}, q) =
p2

2m (s, {nA}, q)
+ u (s, {nA}, q) (11.45)

Dérivée temporelle de la densité d’énergie :

ė =
∂e

∂p
· ṗ+

∂e

∂m
ṁ+ u̇

Dérivées partielles de la densité d’énergie interne : avec p = mv

∂e

∂p
=
p

m
= v et

∂e

∂m
= − p2

2m2
= − v

2

2

Dérivée temporelle de la densité d’énergie :

ė = v · ṗ− 1

2
ṁv2 + u̇ (11.46)
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11.2.7 Dérivée temporelle de l’énergie

Dérivée temporelle de la densité d’énergie :

ė = v · ṗ− 1

2
ṁv2 + u̇ (11.46)

Equation de continuité de la quantité de mouvement :

ṗ = − (∇ · v) mv + ∇ · τ +
∑

f ext (11.37)

Equation de continuité de la masse :

ṁ = − (∇ · v) m (11.41)

Dérivée temporelle : (11.37) et (11.41) dans (11.46)

ė = v ·
(
− (∇ · v) mv+∇ ·τ +

∑
f ext

)
+

1

2
mv2 (∇ · v)+ u̇ (11.47)

Densité d’énergie cinétique :

e− u =
1

2
mv2

Dérivée temporelle de la densité d’énergie :

ė = u̇+ (∇ · v) (u− e) + (∇ · τ ) · v +
∑

f ext · v (11.48)

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus 30 / 79



11.2.8 Equation de continuité de l’énergie interne

Dérivée temporelle de la densité d’énergie :

ė = u̇+ (∇ · v) (u− e) + (∇ · τ ) · v +
∑

f ext · v (11.48)

Equation de continuité de l’énergie :

ė = − (∇ · v) e− ∇ · je +
∑

f ext · v (11.44)

Identification : (11.44) et (11.48)

u̇+ (∇ · v) u+ ∇ · je = − (∇ · τ ) · v

Identité vectorielle :

(∇ · τ ) · v = ∇ · (τ · v)− τ : (∇v) (11.49)

Equation de continuité de l’énergie interne :

u̇+ (∇ · v) u+ ∇ · (je + τ · v) = τ : (∇v)
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11.2.8 Equation de continuité de l’énergie interne

Identité vectorielle :

(∇ · τ ) · v = ∇ · (τ · v)− τ : (∇v) (11.49)

1 Premier terme : convention de sommation d’Einstein

(∇ · τ ) · v =

(∂1, ∂2, ∂3)

τ1
1 τ1

2 τ1
3

τ2
1 τ2

2 τ2
3

τ3
1 τ3

2 τ3
3

v1

v2

v3


=
(
∂iτ

i
1, ∂iτ

i
2, ∂iτ

i
3

)v1

v2

v3

 =
(
∂i τ

i
j

)
vj

(11.50)

2 Deuxième terme : convention de sommation d’Einstein

∇ · (τ · v) = (∂1, ∂2, ∂3)

τ1
1 τ1

2 τ1
3

τ2
1 τ2

2 τ2
3

τ3
1 τ3

2 τ3
3

v1

v2

v3


= (∂1, ∂2, ∂3)

τ1
j v

j

τ2
j v

j

τ3
j v

j

 = ∂i
(
τ ij v

j
) (11.51)
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11.2.8 Equation de continuité de l’énergie interne

Identité vectorielle :

(∇ · τ ) · v = ∇ · (τ · v)− τ : (∇v) (11.49)

3 Troisième terme : convention de sommation d’Einstein

τ : (∇v) = tr

τ1
1 τ1

2 τ1
3

τ2
1 τ2

2 τ2
3

τ3
1 τ3

2 τ3
3

∂1

∂2

∂3

 (v1, v2, v3)


= tr

τ1
1 τ1

2 τ1
3

τ2
1 τ2

2 τ2
3

τ3
1 τ3

2 τ3
3

∂1 v1 ∂1 v2 ∂1 v3

∂2 v1 ∂2 v2 ∂2 v3

∂3 v1 ∂3 v2 ∂3 v3


= tr

τ1
j ∂

j v1 τ1
j ∂

j v2 τ1
j ∂

j v3

τ2
j ∂

j v1 τ2
j ∂

j v2 τ2
j ∂

j v3

τ3
j ∂

j v1 τ3
j ∂

j v2 τ3
j ∂

j v3

 = τ ij ∂
j vi

(11.52)

Identité en composantes : convention de sommation d’Einstein(
∂i τ

i
j

)
vj = ∂i

(
τ ij v

j
)
− τ ij ∂

j vi (11.53)
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11.2.8 Equation de continuité de l’énergie interne

Equation de continuité de l’énergie interne :

u̇+ (∇ · v) u+ ∇ · (je + τ · v) = τ : (∇v)

Equation de continuité de l’énergie interne :

u̇+ (∇ · v) u+ ∇ · ju = σu (11.54)

Densité de courant d’énergie interne :

ju = je + τ · v (11.55)

Densité de source d’énergie interne :

σu = τ : (∇v) (11.56)
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11.3 Equations d’évolution

11.3 Equations d’évolution
11.3.1 Dérivée temporelle de la masse
11.3.2 Masse molaire
11.3.3 Conservation de la masse
11.3.4 Vitesse du centre de masse
11.3.5 Dérivée temporelle de la charge électrique
11.3.6 Charge électrique molaire
11.3.7 Conservation de la charge électrique
11.3.8 Bilan énergétique
11.3.9 Milieu continu sans cisaillement
11.3.10 Affinité chimique
11.3.11 Thermostatique et thermodynamique
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11.3.1 Dérivée temporelle de la masse

Dérivée temporelle de la masse : m (s, {nA }, q)

ṁ =
∂m

∂s
ṡ+

r∑
A=1

∂m

∂nA
ṅA +

∂m

∂q
q̇ (11.57)

Masse indépendante de l’entropie et de la charge :

∂m

∂s
= 0 (11.59) et

∂m

∂q
= 0 (11.60)

Equation de continuité de la masse :

ṁ = − (∇ · v) m (11.41)

Equation de continuité de la substance chimique A :

ṅA = − (∇ · v) nA − ∇ · jA +
n∑

a=1

ωa νaA (11.31)

(11.59), (11.60), (11.41) et (11.31) dans (11.57) : (11.61)(
m−

r∑
A=1

∂m

∂nA
nA

)
(∇ · v) +

r∑
A=1

∂m

∂nA

(
n∑

a=1

ωa νaA − ∇ · jA

)
= 0
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11.3.2 Masse molaire

Equation d’évolution de la masse : (11.61)(
m−

r∑
A=1

∂m

∂nA
nA

)
(∇ · v) +

r∑
A=1

∂m

∂nA

(
n∑

a=1

ωa νaA − ∇ · jA

)
= 0

L’équation (11.61) doit être satisfaite pour toute vitesse v :

m−
r∑

A=1

∂m

∂nA
nA = 0 (11.62)

La dérivée partielle de (11.62) par rap. à la densité de substance B :

∂m

∂nB
−

r∑
A=1

(
∂2m

∂nA∂nB
nA +

∂m

∂nA
δAB

)
= 0 (11.63)

Le 1er et le 3e terme de (11.52) s’annulent :

∂2m

∂nA∂nB
= 0 ∀A = 1, .., r ainsi mA ≡

∂m

∂nA
= cste (11.65)

où mA est la masse d’une mole de substance A, appelée masse molaire.
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11.3.3 Conservation de la masse

Densité de masse : (11.65) dans (11.62)

m =

r∑
A=1

nAmA (11.66)

(11.65) et (11.66) dans (11.61) :

r∑
A=1

mA

(
n∑

a=1

ωa νaA − ∇ · jA

)
= 0 (11.67)

Masse molaire constante : ∇mA = 0 (11.68)

(11.68) dans (11.67) :

n∑
a=1

ωa

(
r∑

A=1

mA νaA

)
− ∇ ·

(
r∑

A=1

mA jA

)
= 0 (11.69)

L’équation (11.69) doit être satisfaite pour tout jA :

r∑
A=1

mA jA = 0 (11.70)

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus 38 / 79



11.3.3 Conservation de la masse

Equation de bilan de courants :

r∑
A=1

mA jA = 0 (11.70)

Equation dynamique :

n∑
a=1

ωa

(
r∑

A=1

mA νaA

)
− ∇ ·

(
r∑

A=1

mA jA

)
= 0 (11.69)

En substituant (11.70) dans (11.69), on obtient la loi de conservation
de la masse de Lavoisier :

r∑
A=1

mA νaA = 0 (11.60)

qui affirme que la réaction chimique a entre les substances chimiques A
conserve la masse.
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11.3.4 Vitesse du centre de masse

La densité de courant de substance A est la somme des densités de
courant convectif et conductif :

nA vA = nA v + jA (11.72)

Densité de quantité de mouvement : (11.66) dans (11.39) et (11.72)

p = mv =

(
r∑

A=1

mA nA

)
v =

r∑
A=1

mA nA vA −
r∑

A=1

mA jA

Densité de quantité de mouvement : (11.70)

p =
r∑

A=1

mA nA vA (11.73)

Vitesse du centre de masse de l’élément de fluide local :

v =
p

m
=

r∑
A=1

mA nA vA

r∑
A=1

mA nA

(11.74)
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11.3.5 Dérivée temporelle de la charge électrique

Dérivée temporelle de la charge électrique : q ({nA })

q̇ =
r∑

A=1

∂q

∂nA
ṅA (11.75)

Equation de continuité de la charge électrique :

q̇ = − (∇ · v) q − ∇ · jq (11.33)

Equation de continuité de la substance chimique A :

ṅA = − (∇ · v) nA − ∇ · jA +
n∑

a=1

ωa νaA (11.31)

(11.31) et (11.33) dans (11.75) :(
q −

r∑
A=1

∂q

∂nA
nA

)
(∇ · v)

+
r∑

A=1

∂q

∂nA

(
n∑

a=1

ωa νaA − ∇ · jA

)
+ ∇ · jq = 0 (11.77)
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11.3.6 Charge électrique molaire

L’équation (11.77) doit être satisfaite pour toute vitesse v :

q −
r∑

A=1

∂q

∂nA
nA = 0 (11.78)

La dérivée partielle de (11.78) par rap. à la densité de substance B :

∂q

∂nB
−

r∑
A=1

(
∂2q

∂nA∂nB
nA +

∂q

∂nA
δAB

)
= 0 (11.79)

Le 1er et le 3e terme de (11.79) s’annulent :

∂2q

∂nA∂nB
= 0 ∀A = 1, .., r ainsi qA ≡

∂q

∂nA
= cste (11.81)

où qA est la charge électrique d’une mole de substance A, appelée charge
électrique molaire.

(11.81) dans (11.78) :

q =
r∑

A=1

nA qA (11.82)
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11.3.7 Conservation de la charge électrique

Densité de charge électrique :

q =

r∑
A=1

nA qA (11.82)

Types de substances électriquement chargées :

1 qA < 0 : anions

2 qA > 0 : cations

3 qA = 0 : substances neutres

(11.78) et (11.82) dans (11.77) :

r∑
A=1

qA

(
n∑

a=1

ωa νaA − ∇ · jA

)
+ ∇ · jq = 0 (11.83)

Charge électrique molaire constante : ∇ qA = 0 (11.84)

Ainsi, l’équation (11.83) peut s’écrire comme :

n∑
a=1

ωa

(
r∑

A=1

qA νaA

)
+ ∇ ·

(
jq −

r∑
A=1

qA jA

)
= 0 (11.85)
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11.3.7 Conservation de la charge électrique

Equation dynamique :

n∑
a=1

ωa

(
r∑

A=1

qA νaA

)
+ ∇ ·

(
jq −

r∑
A=1

qA jA

)
= 0 (11.85)

L’équation (11.85) doit être satisfaite pour tout jA :

jq =
r∑

A=1

qA jA (11.86)

En substituant (11.86) dans (11.85), on obtient la loi universelle de
conservation de la charge électrique :

r∑
A=1

qA νaA = 0 (11.87)

qui affirme que la réaction chimique a entre les substances chimiques A
conserve la charge électrique.
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11.3.8 Bilan énergétique

Dérivée temporelle de la densité d’énergie interne : u (s, {nA }, q)

u̇ =
∂u

∂s
ṡ+

r∑
A=1

∂u

∂nA
ṅA +

∂u

∂q
q̇ (11.88)

La condition d’équilibre local permet de définir des champs intensifs
conjugués aux champs d’états densitaires s, nA et q :

1 Température : T =
∂U

∂S
=
∂u

∂s

2 Potentiel chimique : µA =
∂U

∂NA
=

∂u

∂nA
(11.89)

3 Potentiel électrostatique : ϕ =
∂U

∂Q
=
∂u

∂q

(11.89) dans (11.88) :

u̇ = T ṡ+
r∑

A=1

µA ṅA + ϕ q̇ (11.90)
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11.3.8 Bilan énergétique

Dérivée temporelle de la densité d’énergie interne : u (s, {nA }, q)

T ṡ+
r∑

A=1

µA ṅA + ϕ q̇ − u̇ = 0 (11.90)

Equation de continuité de l’énergie interne :

− u̇ = (∇ · v) u+ ∇ · ju − σu (11.54)

Equation de continuité de l’entropie :

ṡ = σs − (∇ · v) s− ∇ · js (11.29)

Equation de continuité de la substance chimique A :

ṅA =

n∑
a=1

ωa νaA − (∇ · v) nA − ∇ · jA (11.31)

Equation de continuité de la charge électrique :

q̇ = − (∇ · v) q − ∇ · jq (11.33)
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11.3.8 Bilan énergétique

(11.54), (11.29), (11.31) et (11.33) dans (11.90) :

T
(
σs − (∇ · v) s− ∇ · js

)
+

r∑
A=1

µA

( n∑
a=1

ωa νaA − (∇ · v)nA − ∇ · jA
)

(11.91)

+ ϕ
(
− (∇ · v) q − ∇ · jq

)
+ (∇ · v)u+ ∇ · ju − σu = 0

Identités vectorielles : dérivées d’un produit de fonctions

T (∇ · js) = ∇ · (T js)− js ·∇T

r∑
A=1

µA (∇ · jA) = ∇ ·
(

r∑
A=1

µA jA

)
−

r∑
A=1

jA ·∇µA

ϕ (∇ · jq) = ∇ · (ϕ jq)− jq ·∇ϕ
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11.3.9 Milieu continu sans cisaillement

Equation dynamique : (11.91) et identités vectorielles(
u− T s−

r∑
A=1

µA nA − q ϕ

)
(∇ · v) (11.92)

+ ∇ ·
(
ju − T js −

r∑
A=1

µA jA − ϕ jq

)
+ T πs +

r∑
A=1

µA

(
n∑

a=1

ωa νaA

)

+ js ·∇T +

r∑
A=1

jA ·∇µA + jq ·∇ϕ− σu = 0

Milieu continu sans cisaillement : tenseur des contraintes isotrope

τ = (τ − p) 1 =

τ − p 0 0
0 τ − p 0
0 0 τ − p

 (11.93)

où 1 est le tenseur identité représenté par la matrice identité 3× 3, τ est
le frottement visqueux interne et p est la pression.

Densité de source d’énergie interne :

σu = τ : (∇v) = tr
(

(τ − p) (∇v)
)

= (τ − p) (∇ · v) (11.95)

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus 48 / 79



11.3.10 Affinité chimique

Densités de charge et de courant électriques :

q =

r∑
A=1

qA nA et jq =

r∑
A=1

qA jA (11.86)

Densité de puissance chimique : (11.96)

r∑
A=1

µA

(
n∑

a=1

ωa νaA

)
= −

n∑
a=1

ωa

(
−

r∑
A=1

µA νaA

)
= −

n∑
a=1

ωaAa

(11.86), (11.93), (11.95) dans (11.92) :(
u− T s+ p−

r∑
A=1

(
µA + qAϕ

)
nA

)
(∇ · v)

+ ∇ ·
(
ju − T js −

r∑
A=1

(
µA + qAϕ

)
jA

)

+ T σs −
n∑

a=1

ωaAa − τ (∇ · v)

+ js ·∇T +
r∑

A=1

jA ·
(
∇µA + qA∇ϕ

)
= 0

(11.97)
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11.3.11 Thermostatique et thermodynamique

1 Equation d’équilibre thermostatique : (11.97) doit être satisfaite pour
toute vitesse

u = T s− p+
r∑

A=1

(
µA + qAϕ

)
nA (11.98)

2 Equation d’évolution thermodynamique réversible : (11.97) doit être
satisfaite pour toute densité de courant

ju = T js +
r∑

A=1

(
µA + qAϕ

)
jA (11.99)

3 Equation d’évolution thermodynamique irréversible : (11.98) et
(11.99) dans (11.97)

σs =
1

T

{
n∑

a=1

ωaAa + τ (∇ · v)

+ js · (−∇T ) +

r∑
A=1

jA ·
(
− ∇µA − qA ∇ϕ

)} (11.100)
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11.4 Liens entre systèmes local et global

11.4 Liens entre systèmes local et global
11.4.1 Conditions d’homogénéité
11.4.2 Bilan de volume
11.4.3 Relation d’Euler
11.4.4 Bilan d’énergie interne
11.4.5 Premier principe de la thermodynamique
11.4.6 Deuxième principe de la thermodynamique
11.4.7 Dissipation
11.4.8 Equation de continuité pour les substances chimiques
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11.4.1 Conditions d’homogénéité

Pour établir les principes de la thermodynamique d’un système global
simple, qui est homogène et non-uniforme, on intègre l’équation
d’équilibre thermostatique et les équations d’évolutions réversible et
irréversible des systèmes locaux ainsi que les équations de continuité sur
le volume du système.

Homogénéité des champs scalaires : gradient nul

1 Champs intensifs :

∇T = 0 et ∇µA = 0 et ∇ϕ = 0 (11.107)

2 Densités de source :

∇σu = 0 et ∇σs = 0 et ∇σA = 0 (11.108)

Homogénéité des divergences des champs vectoriels : gradient nul

1 Divergence de la vitesse :

∇ (∇ · v) = 0 (11.109)

2 Divergence des densités de courant :

∇ (∇ · ju) = 0 et ∇ (∇ · js) = 0 et ∇ (∇ · jA) = 0
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11.4.2 Bilan de volume

Dérivée temporelle du volume : v = 1 et v̇ = 0

V̇ =

∫
V

dV
(
v̇ + (∇ · v) v

)
=

∫
V

dV (∇ · v) (11.102)

Courant de volume :

IV = −
∮
S

dS · jv = −
∫
V

dV (∇ · jv) (11.103)

Densité de courant de volume : (11.102) et (11.103)

jv = −v (11.104)

Equation de bilan de volume : (11.102) et (11.103)

V̇ = IV (11.105)

Source de volume : nulle

ΣV = 0 (11.106)
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11.4.3 Relation d’Euler

Equation d’équilibre thermostatique locale :

u (s, {nA}, q) = T s− p+
r∑

A=1

(
µA + qAϕ

)
nA (11.110)

Equation d’équilibre thermostatique globale : intégrale sur le volume∫
V

dV u = T

∫
V

dV s − p

∫
V

dV +
r∑

A=1

(
µA + qAϕ

) ∫
V

dV nA (11.112)

Energie interne globale :

U (S, V, {NA}, Q) =

∫
V

dV u (s, {nA}, q)

Entropie S, nb. de moles NA de substance A, charge électrique Q :

S =

∫
V

dV s NA =

∫
V

dV nA Q =

∫
V

dV q (11.111)

Relation d’Euler : équation d’équilibre thermostatique globale :

U (S, V, {NA}, Q) = T S − p V +

r∑
A=1

(
µA + qAϕ

)
NA (11.113)
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11.4.4 Bilan d’énergie interne

Equation de continuité de l’énergie interne :

u̇+ (∇ · v)u = −∇ · ju + σu (11.54)

Equation de continuité de l’énergie interne : intégration sur le volume∫
V

dV
(
u̇+ (∇ · v) u

)
= −

∫
V

dV (∇ · ju) +

∫
V

dV σu (11.117)

Dérivée temporelle de l’énergie interne :

U̇ =

∫
V

dV
(
u̇+ (∇ · v) u

)
(11.114)

Courant d’énergie interne :

IU = −
∮
S

dS · ju = −
∫
V

dV (∇ · ju) (11.115)

Source d’énergie interne :

ΣU =

∫
V

dV σu (11.116)

Equation de bilan d’énergie interne :

U̇ = IU + ΣU (11.118)
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11.4.5 Premier principe de la thermodynamique

Equation d’évolution réversible :

ju = T js +

r∑
A=1

(
µA + qAϕ

)
jA (11.99)

Densité de courant de chaleur :

jQ = T js (11.120)

Densité de courant énergétique de matière :

jC =
r∑

A=1

(
µA + qAϕ

)
jA (11.121)

Equation d’évolution réversible :

ju = jQ + jC (11.119)

Courant de chaleur :

IQ = −
∮
S

dS · jQ = −
∫
V

dV (∇ · jQ) (11.122)

Courant énergétique de matière :

IC = −
∮
S

dS · jC = −
∫
V

dV (∇ · jC) (11.123)
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11.4.5 Premier principe de la thermodynamique

Equation d’évolution réversible : intégration sur la surface

IU = −
∮
S

dS · ju = −
∮
S

dS · jQ −
∮
S

dS · jC (11.124)

Courant d’énergie interne : (11.122) et (11.123) dans (11.124)

IU = IQ + IC (11.125)

Puissance mécanique : réversible (système simple)

PW = − p V̇ = − p
∫
V

dV (∇ · v) (11.126)

Tenseur des contraintes : déformation réversible : τ = 0

τ = − p 1 ainsi τ : (∇v) = − p (∇ · v) (11.128)

Puissance mécanique : (11.128), (11.56) et (11.116) dans (11.126)

PW =

∫
V

dV τ : (∇v) =

∫
V

dV σu = ΣU (11.132)

Premier principe de la thermodynamique : référentiel du fluide

U̇ = IU + ΣU = IQ + IC + PW (11.133)
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11.4.5 Premier principe de la thermodynamique

Densité de courant d’énergie : (11.55) où τ = − p 1

je = ju − τ · v = ju + pv (11.134)

Courant d’énergie : intégration sur la surface

IE = −
∮
S

dS · je = −
∮
S

dS · ju − p

∮
S

dS · v (11.135)

Courant d’énergie interne :

IU = −
∮
S

dS · ju (11.124)

Puissance mécanique : théorème de la divergence

PW = − p V̇ = − p
∫
V

dV (∇ · v) = − p
∮
S

dS · v (11.132)

Courant d’énergie : (11.132) et (11.124) dans (11.135)

IE = IU + PW = IQ + IC + PW (11.138)
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11.4.5 Premier principe de la thermodynamique

Equation de continuité de l’énergie :

ė+ (∇ · v) e = −∇ · je + σe (11.44)

Equation de continuité de l’énergie interne : intégration sur le volume∫
V

dV
(
ė+ (∇ · v) e

)
= −

∫
V

dV (∇ · je) +

∫
V

dV σe (11.144)

Dérivée temporelle de l’énergie :

Ė =

∫
V

dV
(
ė+ (∇ · v) e

)
(11.143)

Courant d’énergie :

IE = −
∮
S

dS · je = −
∫
V

dV (∇ · je) (11.135)

Source d’énergie :

ΣE =

∫
V

dV σe =

∫
V

dV
∑

f ext · v = P ext (11.140)

Premier principe : équation de bilan d’énergie

Ė = IE + ΣE = IQ + IC + PW + P ext (11.146)
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11.4.6 Deuxième principe de la thermodynamique

Equation de continuité de l’entropie :

ṡ+ (∇ · v) s = −∇ · js + σs (11.54)

Equation de continuité de l’entropie : intégration sur le volume∫
V

dV
(
ṡ+ (∇ · v) s

)
= −

∫
V

dV (∇ · js) +

∫
V

dV σs (11.151)

Courant d’entropie :

IS = −
∮
S

dS · js = −
∫
V

dV (∇ · js) (11.148)

Source d’entropie : condition d’évolution

ΣS =

∫
V

dV σs > 0 (11.150)

Courant de chaleur :

IQ = −
∮
S

dS · jQ = −T
∮
S

dS · js = T IS (11.149)

Deuxième principe de la thermodynamique :

Ṡ = IS + ΣS =
IQ
T

+ ΣS (11.152)
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11.4.7 Dissipation

Equation d’évolution irréversible : (11.100) système homogène

σs =
1

T

(
n∑

a=1

Aa ωa

)
(11.153)

Source d’entropie : intégration sur le volume

ΣS =

∫
V

dV σs =
1

T

(
n∑

a=1

Aa

∫
V

dV ωa

)
> 0 (11.54)

Vitesse de réaction chimique :

Ωa =

∫
V

dV ωa (11.155)

Source d’entropie : (11.155) dans (11.54)

ΣS =
1

T

(
n∑

a=1

Aa Ωa

)
> 0 (11.156)
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11.4.8 Equation de continuité pour les substances chimiques

Equation de continuité de la substance chimique A :

ṅA + (∇ · v) nA = −∇ · jA +

n∑
a=1

ωa νaA (11.31)

Equation de continuité pour les substances chimiques : (11.157)

r∑
A=1

µA

(
ṅA +(∇ · v) nA

)
= −∇ ·

(
r∑

A=1

µA jA

)
+

n∑
a=1

ωa

r∑
A=1

µA νaA

Densité de courant chimique pour des substances neutres :

jC =

r∑
A=1

µA jA (11.158)

Affinité d’une réaction chimique a :

Aa = −
r∑

A=1

µA νaA (8.22)

Equation de continuité pour les substances chimiques :
r∑

A=1

µA

(
ṅA + (∇ · v) nA

)
= −∇ · jC −

n∑
a=1

Aa ωa (11.159)
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11.4.8 Equation de bilan pour les substances chimiques

Equation de continuité pour les substances chimiques :
r∑

A=1

µA

(
ṅA + (∇ · v) nA

)
= −∇ · jC −

n∑
a=1

Aa ωa (11.159)

Equation de continuité : intégration sur le volume : (11.160)

r∑
A=1

µA

∫
V

dV
(
ṅA+(∇ · v) nA

)
= −

∫
V

dV (∇ · jC)−
n∑

a=1

Aa

∫
V

dV ωa

Dérivée temporelle de la substance chimique A :
r∑

A=1

µA ṄA =

r∑
A=1

µA

∫
V

dV
(
ṅA + (∇ · v) nA

)
(11.161)

Courant énergétique de matière :

IC = −
∫
V

dV (∇ · jC) (11.123)

Vitesse de réaction :

Ωa =

∫
V

dV ωa (11.155)
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11.4.8 Equation de bilan pour les substances chimiques

Equation de bilan pour les substances chimiques :

r∑
A=1

µA ṄA = IC −
n∑

a=1

Aa Ωa (11.162)

Courant de substance A :

IA = −
∮
S

dS · jA (11.163)

Densité de courant chimique pour des substances neutres :

jC =
r∑

A=1

µA jA (11.158)

Courant énergétique de matière :

IC = −
∮
S

dS · jC = −
r∑

A=1

µA

∮
S

dS · jA =
r∑

A=1

µA IA (11.164)
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11.5 Applications

11.5 Applications
11.5.1 Accéléromètre à force d’Archimède
11.5.2 Invariance galiléenne
11.5.3 Tenseur des contraintes symétrique
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11.5.1 Accéléromètre à force d’Archimède

Système : un flotteur de densité de masse m′

est immergé dans un récipient complètement
rempli de liquide de densité de masse m où
m > m′. Le récipient se déplace par rapport au
sol avec une accélération constante a. Le
liquide est au repos par rapport au récipient.

a

m

Densité de force extérieure : densité de poids dans le liquide∑
f ext = m g (11.168)

Tenseur des contraintes : absence de frottement interne : τ = 0

τ = − p 1 ainsi ∇ · τ = −∇ p (11.128)

Théorème du centre de masse : (11.128) dans (11.42)∑
f ext − ∇ p = ma (11.167)

Gradient de pression : (11.168) dans (11.167)

∇ p = m (g − a) (11.169)
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11.5.1 Accéléromètre à force d’Archimède

Force d’Archimède : résultante des forces de
pression exercée par le liquide sur la surface S
du flotteur.

FA =

∫
S

p (− dS) (11.170)

où dS est orienté du flotteur vers le liquide.

a

m

Théorème du gradient : champ scalaire pression p

FA = −
∫
S

p dS = −
∫
V

∇ p dV (11.171)

où V est le volume du flotteur.

Gradient de pression :

∇ p = m (g − a) (11.169)

Force d’Archimède : (11.169) dans (11.171) masse homogène m

FA = −m (g − a)

∫
V

dV (11.172)
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11.5.1 Accéléromètre à force d’Archimède

Force d’Archimède : (11.172) remise en forme

FA = −mV (g − a) (11.173)

Dans un fluide accéléré, i.e. a 6= 0, la force d’Archimède n’est pas
verticale : elle est oblique et orientée le long du fil.

Principe d’Archimède : cas particulier : a = 0

FA = −mV g (principe d’Archimède) (11.174)

Dans un fluide au repos, i.e. a = 0, la force d’Archimède est verticale et
orientée vers le haut, et sa norme est égale au poids du fluide déplacé.

Accéléromètre : on construit un accéléromètre en attachant un flotteur
de densité de masse m′ à un fil qui est retenu au fond d’un récipient
complètement rempli de liquide de densité de masse m. Le récipient se
déplace par rapport au sol avec une accélération constante a. Le liquide
et le flotteur sont au repos par rapport au récipient.
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11.5.1 Accéléromètre à force d’Archimède

Objet : flotteur homogène de masse M ′

Forces extérieures :

1 Poids : M ′g

2 Tension : T

3 Force d’Archimède : FA

a

T

am
m‘

FA

g

x

ŷ

^

Théorème du centre de masse : flotteur

M ′g + FA + T = M ′a (11.175)

Masse : flotteur homogène de densité m′

M ′ = m′V (11.176)

Force d’Archimède :

FA = −mV (g − a) (11.173)

Tension : dans le fil (11.175) où m′ < m

T = −M ′ (g − a)− FA = (m− m′)V (g − a) (11.177)
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11.5.1 Accéléromètre à force d’Archimède

Tension : dans le fil

T = (m− m′)V (g − a) (11.177)

Grandeurs vectorielles : (11.179)

1 Tension : T = Tx x̂+ Ty ŷ

2 Accélération : a = a x̂

3 Champ gravitationnel : g = − g ŷ

a

T

am
m‘

FA

g

x

ŷ

^

Tension : composantes

Tx = − (m− m′)V a

Ty = − (m− m′)V g
(11.180)

Angle d’inclinaison du fil :

tanα =
Tx
Ty

=
a

g
ainsi α = arctan

(
a

g

)
(11.181)

Le flotteur s’incline vers la droite si a > 0 et vers la gauche si a < 0.
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11.5.1 Expérience - Accéléromètre

1 Un ballon rempli d’hélium, fixé au bout d’un fil, est attaché au sol d’un
chariot. En accélérant le chariot vers la droite, il subit une force
d’Archimède orientée obliquement vers la droite le long du fil. En freinant
le chariot, il s’incline vers la gauche, car son accélération devient
négative. En faisant tourner uniformément le chariot autour d’un axe fixe,
la force d’Archimède est orientée obliquement vers l’intérieur du virage en
raison de l’accélération centripète. L’angle d’inclinaison du fil permet de
déterminer l’accélération du chariot.

2 Une balle en plastique est attachée par un fil au fond d’un récipient
rempli d’eau. Lorsqu’on accélère le récipient, elle subit une force
d’Archimède orientée le long du fil dans le sens du déplacement.
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11.5.2 Invariance galiléenne

Système : fluide homogène et uniforme

1 Référentiel d’inertie R : vitesse du fluide v0 = cste

2 Référentiel du fluide R′ : fluide au repos

Transformation de Galilée : R (x, t) → R′ (x′, t′)

x′ = x− v0 t

t′ = t
(11.182)

Fonction d’état : grandeur scalaire extensive

1 Référentiel d’inertie R : F (t)

2 Référentiel du fluide R′ : F (t′)

Densité de fonction d’état : grandeur scalaire densitaire

1 Référentiel d’inertie R : f (x, t)

2 Référentiel du fluide R′ : f (x′, t′)
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11.5.2 Invariance galiléenne

Dérivée temporelle de la fonction d’état : référentiel d’inertie R

Ḟ (t) =

∫
V (t)

dV (x)
(
∂t f (x, t) + (v0 ·∇) f (x, t)

)
(11.183)

Dérivée temporelle de la fonction d’état : référentiel du fluide R′

Ḟ (t′) =

∫
V (t′)

dV (x′) ∂t′ f (x′, t′) (11.184)

Invariance galiléenne : la coordonnée temporelle est invariante par
transformation de Galilée. Ainsi, la dérivée temporelle de la fonction
d’état est indépendante du référentiel,

Ḟ (t) = Ḟ (t′) (11.185)

Loi de transformation : (11.183) - (11.185) identification des intégrants

∂t′ f (x′, t′) = ∂t f (x, t) + (v0 ·∇) f (x, t) (11.186)
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11.5.2 Invariance galiléenne

Référentiel R′ : en translation à vitesse v0 par rap. au référentiel R

∂t′ f (x′, t′) = ∂t f (x, t) + (v0 ·∇) f (x, t) (11.186)

Référentiel R : en translation à vitesse −v0 par rap. au référentiel R′

∂t f (x, t) = ∂t′ f (x′, t′)− (v0 ·∇′) f (x′, t′) (11.187)

Invariance galiléenne du gradient : (11.186) + (11.187)

∇′ f (x′, t′) = ∇ f (x, t) (11.188)

Dérivée temporelle : transformation de Galilée (11.182)

v′ = v − v0 ainsi v0 = v − v′ (11.189)

Loi de transformation : (11.189) dans (11.186)

∂t′ f (x′, t′) = ∂t f (x, t) +
(

(v − v′) ·∇
)
f (x, t)

Loi de transformation : remise en forme

∂t′ f (x′, t′) + (v′ ·∇′) f (x′, t′) = ∂t f (x, t) + (v ·∇) f (x, t) (11.190)

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus 74 / 79



11.5.2 Invariance galiléenne

Loi de transformation :

∂t′ f (x′, t′) + (v′ ·∇′) f (x′, t′) = ∂t f (x, t) + (v ·∇) f (x, t) (11.190)

Dérivée temporelle covariante : référentiel d’inertie R (11.21)

ḟ (x, t) = ∂t f (x, t) + (v (x, t) ·∇) f (x, t)

Dérivée temporelle covariante : référentiel du fluide R′ (11.21)

ḟ (x′, t′) = ∂t′ f (x′, t′) + (v′ (x′, t′) ·∇′) f (x′, t′)

Invariance galiléenne de la dérivée temporelle covariante : (11.190)

ḟ (x′, t′) = ḟ (x, t) (11.191)

Invariance galiléenne : les lois non-relativistes de la mécanique
classique, de la mécanique des fluides, de la thermodynamique et de la
mécanique quantique sont invariantes par transformation de Galilée.
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11.5.3 Tenseur des contraintes symétrique

Densité de moment cinétique :

` = r × p (11.192)

Equation de continuité : moment cinétique

˙̀+ (∇ · v) `+ ∇ · j` = σ` (11.193)

Dérivée temporelle : moment cinétique

˙̀ = ṙ × p+ r × ṗ = r × ṗ (11.194)

Equation de continuité : quantité de mouvement

ṗ+ (∇ · v) p− ∇ · τ =
∑

f ext (11.37)

Equation de continuité : moment cinétique (11.37) dans (11.194)

˙̀+ (∇ · v) `− r × (∇ · τ ) =
∑

r × f ext (11.195)
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11.5.3 Tenseur des contraintes symétrique

Equation de continuité : moment cinétique

˙̀+ (∇ · v) `+ ∇ · j` = σ` (11.193)

˙̀+ (∇ · v) `− r × (∇ · τ ) =
∑

r × f ext (11.195)

Densité de source : moment cinétique

σ` =
∑

r × f ext = r ×
∑

f ext = r × σp (11.198)

Densité de courant : moment cinétique

j` = r × jp = − r × τ (11.199)

Divergence de la densité de courant : (11.193) et (11.195)

∇ · j` = − r × (∇ · τ ) (11.200)

Divergence de la densité de courant :

∇ · j` = −∇ · (r × τ ) (11.197)
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11.5.3 Tenseur des contraintes symétrique

Divergence de la densité de courant : (11.200) et (11.197)

∇ · (r × τ ) = r × (∇ · τ ) (11.201)

1 Premier terme : convention de sommation d’Einstein avec ∂` r
j = δj`

∇ · (r × τ ) =
(
∂k
(
ε j

1i r
i τkj

)
, ∂k

(
ε j

2i r
i τkj

)
, ∂k

(
ε j

3i r
i τkj

))
=
(
ε j

1i τ
i
j , ε

j
2i τ

i
j , ε

j
3i τ

i
j

)
(11.202)

+
(
ε j

1i r
i ∂k τ

k
j , ε

j
2i r

i ∂k τ
k
j , ε

j
3i r

i ∂k τ
k
j

)
2 Deuxième terme : convention de sommation d’Einstein

r × (∇ · τ ) =
(
ε j

1i r
i ∂k τ

k
j , ε

j
2i r

i ∂k τ
k
j , ε

j
3i r

i ∂k τ
k
j

)
(11.203)

Identité en composantes : (11.201) convention de sommation(
ε j

1i τ
i
j , ε

j
2i τ

i
j , ε

j
3i τ

i
j

)
= (0, 0, 0) (11.204)
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11.5.3 Tenseur des contraintes symétrique

Identité en composantes : convention de sommation d’Einstein(
ε j

1i τ
i
j , ε

j
2i τ

i
j , ε

j
3i τ

i
j

)
= (0, 0, 0) (11.204)

Composantes du tenseur antisymétrique de Levi-Civita :

ε 3
12 = ε 1

23 = ε 2
31 = 1 et ε 2

13 = ε 3
21 = ε 1

32 = − 1 (11.205)

Identité en composantes : (11.205) dans (11.204)(
τ2

3 − τ3
2, τ

3
1 − τ1

3, τ
1
2 − τ2

1

)
= (0, 0, 0) (11.206)

Tenseur des contraintes symétrique :

τ1
2 = τ2

1 et τ2
3 = τ3

2 et τ3
1 = τ1

3 (11.207)
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