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Thermodynamique des milieux continus
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11.1.1 Introduction historique

@ Thermodynamique avant Eckart et Stiickelberg
Avant 1940-1950 :

@ Thermostatique : états d'équilibre

@ Quasi-thermostatique : processus entre des états
d’équilibre

@ Thermodynamique depuis Stiickelberg
Apres 1950 :

@ Thermodynamique : évolution temporelle des états

@ Equations de continuité : description en termes
d’équations différentielles locales

( . 2 ./ D /.

D . . DD h
D a propos de Stiuickelberg 50T

@ Feynman ©

Cern 1965 :

“He did the work and walks alone toward the
sunset ; and, here | am, covered in all the glory,
which rightfully should be his.”

Stiickelberg
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11.1.2 Systeme global et systeme local

Macroscopique

Microscopique

Systéme
local

Systéme 4
global

@ Systeme global : @ Systeme local :
© Milieu continu de points { x } Q Point x
@ Inéquilibre @ Equilibre
© Inhomogene © Homogene
©Q Non-uniforme Q@ Uniforme
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11.1.2 Systeme global et systeme local

@ Systeme global :
© Variable d’état extensive dynamique : quantité de mouvement P (t)
© Variable d’état extensive thermique : entropie S ()
© Autres variables d’état extensives : X; (¢),..., X, (1)
Q Etat : {P(t),S(t), Xa(t),...,Xn(t)}
©@ Fonction d’état :

F(t) = F(P (), S (), X1 (t),...,Xn (t)) (11.1)

@ Systeme local :
© Champ d’état densitaire dynamique : densité de quant. de mvt p (x,t)
© Champ d’état densitaire thermique : densité d’entropie s (x, 1)
© Autres champs d’état densitaires : z1 (x,%),..., 2, (x, 1)
Q Etat: {p(x,t),s(x,t),x1 (x,t),...,xn (x,t)}
© Densité de fonction d’état :
flx,t) = f(p (x,1), 5 (@, 1), 1 (T,1) ..., Tn (w,t)) (11.5)
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11.1.3 Lien entre systeme global et systeme local

@ Variable d’état extensive dynamique : quantité de mouvement (11.2)

P(t) = /V L AP0 = /V V@ dclzjv(z;;) — /V V@ @

@ Variable d’état extensive thermique : entropie (11.3)

dS(x,t)
St:/ dSa:,t:/ dV (x ’ :/ dV (x) s(x,t
0= o= @ TEs= | @ s
© Autres variables d’état extensives : (11.4) ou ¢=1,...,n

X; (t) = /V(t) dX;(x,t) = /V(t) dV (x) df;‘;((z’)t) = /V(t) dV(x) x; (x,1)

© Fonctions d’état extensives scalaires : (11.6)

F(t) = /V ) dF(z,1) = /V ) dV (z) dgv(‘f(”z;;) - /V ) AV (z) f (x,1)
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11.1.4 Variation de la fonction d’état scalaire

@ Variation de la fonction d’état scalaire :

SF (1) :/ v (z) 6 f (a:,t)+]§ 5AV (1) [ (a,1)
V(t) S(t)
© Variation de volume infinitésimal :
6dV (x,t) =dS(x)- or(x,t)
——— Z ~e—

volume surface déplacement

@ Dérivée temporelle de la fonction d’'état scalaire :
dF (t OF (t
() _ . 6F ()

F (t) = dt ot—0 ot

© Dérivée temporelle de la densité de fonction d'état scalaire :

_f (@) _ . of (&)
Ofl@ )= =5 — = [m =5
@ Champ de vitesse :
or (x,t)

v(et) = Jim, =

@ Dérivée temporelle de la fonction d’état scalaire :

F(t) = /V(t) dV(x) O f (x,t) —I—% dS(x) - v (x,t) f (x,t)

S(t)
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@ Dérivée temporelle de la fonction d’état scalaire :

Ft) = /m) 4V (z) atf(m,t)+j<[ dS(z) v (z.) f (z.1) (11.10)

S(t)
N~ N~
volume surface

@ Théoreme de la divergence :

L'intégrale d'une fonction sur la surface S (t) est égale a |'intégrale de la
divergence de cette fonction sur le volume V' (¢) :

F (1) = /V L@ [0 @0V (F@ e en)] (11.11)

@ Divergence : coordonnées cartésiennes

f(z,t)v! (1)
A\ (f (13,?5)’0(.’13,75)) — (81762783) f(wvt) 02 wvt)
f(z,t) v’ (1)
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11.1.6 Dérivée temporelle de la fonction d’état - physique

@ Equation de bilan de la fonction d’état scalaire :
F)=Xp @)+ Ir(t) (1.12)

@ Causes physiques de la variation temporelle

de la fonction d’état scalaire : @5 (@)
© Densité de source o (x,1) : ﬁ
production interne au volume V (%)
© Densité de courant js (@,t) :
flux a travers la surface S (t)
@ Dérivée temporelle de la fonction d’état scalaire :
F(t) = / dV(x) of (x,t) — ]{ dS(x) - g (x,t) (11.17)
V(t) S(t)
2 (1) I (1)

@ Théoreme de la divergence :

L'intégrale d'une fonction sur la surface S (t) est égale a |'intégrale de la
divergence de cette fonction sur le volume V' (¢) :

F (1) :/m) dV () [af (@,t) — V- j; (w,t)} (11.18)
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11.1.7 Equation de continuité - référentiel fixe

@ Dérivée temporelle de la fonction d’état scalaire - mathématique :

F (1) :/m) dV (z) [8tf(:13,t)+V- (f (a:,t)fv(a:,t))] (11.11)

@ Dérivée temporelle de la fonction d’état scalaire - physique :

F (1) :/m) dV () [af (@,t) — V- j; (:c,t)] (11.18)

@ Les expressions mathématique et physique de la dérivée temporelle de la
fonction d'état scalaire F (t) doivent étre égales en tout point &. En
identifiant les intégrants des équations (11.11) et (11.18), on obtient
I'équation de continuité locale de la fonction d'état scalaire F'(t) décrite
par rapport a un référentiel fixe dans I'espace :

0 f (,t)+ V- (f(@.t)v(@,t) ) = op (@.1) ~ V-jy(@,1)  (1L19)
Q f(x,t)v(x,t) : densité de courant convectif

mouvement du centre de masse local du fluide par rap. au référentiel fixe

Q jr(x,t) : densité de courant conductif

mouvement relatif du fluide par rapport au réf. du centre de masse local
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11.1.8 Equation de continuité - référentiel local du fluide

e Equation de continuité de la fonction d’état scalaire dans un
référentiel fixe :

0, f (x,t) + V- (f(m,t)v(:c,t)) — oy (@,t) — V-4 (2,t)  (11.19)

@ Divergence du courant de la densité de fonction d’état :

Jf2 3 ,
V- jr=(01,02,8) it | = >0 s (11.20)
]f 1=1
@ Dérivée temporelle de la densité de fonction d’état dans le
référentiel local du fluide :

flzt) =0 f(z,t) + (v (2, t) - V) f (1) (11.21)
@ Terme convectif :
ol 3
v-V = (v1,09,03) (0% | =) 00 (11.22)
o3 i=1
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11.1.8 Equation de continuité - référentiel local du fluide

@ Equation de continuité de la fonction d’état scalaire dans un
référentiel fixe :

O, f (x,t) + V- (f(a:,t)v(a:,t)) =0 (z,t)— V-js(z,t)  (11.19)

@ Dérivée temporelle de la densité de fonction d’état dans le
référentiel local du fluide :

fa,t) =0, f(2,t) + (v(z,1) - V) f (z,1) (11.21)
o ldentité vectorielle : (11.23)

Ve (f@tv@t))=f(@t) V-v@t)+ (@) V) (@)

@ Divergence de la vitesse :
1

(% 3
V. .v= (5’1,82,83) 112 = Z 81 Ui (1126)
V3 i=1

e Equation de continuité de la fonction d’état scalaire dans le
référentiel local du fluide : (11.21) et (11.23) dans (11.19)

f(z,t) + (V- -v(x,t)) f(x,t) + V-5 (x,t) =0 (, 1) (11.24)
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11.1.9 Equations de continuité - scalaire et vectorielle

e Equation de continuité de la fonction d’état scalaire :

f(z,t)+ (V- -v(x,t)) f(x,t) + V- -jr(x,t) =0f (2,1) (11.24))

@ Généralisation de I'équation de continuité de la fonction d’état
scalaire a la fonction d’état vectorielle :

© Fonction d’état : scalaire — vectorielle : F'(t) — F (1)

© Densité de fonction d’état : scalaire — vectorielle : f (x,t) — f (x,1)
© Densité de source : scalaire — vectorielle : of (®,t) — of (x,t)

© Densité de courant : vectorielle — tensorielle : 3¢ (x,t) — jf (x,t)

© Divergence : scalaire — vectorielle : V - 55 (®,t) — V -js (2,1)
e Equation de continuité de la fonction d’état vectorielle :

fl@t)+(V-v(z,t) flet)+ V- j(@t) =05 (x,1) (11.25) |
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11.1.9 Equations de continuité - scalaire et vectorielle

e Equation de continuité de la fonction d’état scalaire :

f(z,t)+ (V- -v(x,t) f(x, )+ V- -jr(xz,t) =0f(2,1) (11.24)

@ Divergence salaire du courant de la densité de fonction d’état :

1

Jf 3 |
V - j;=(01,0,0s) jfi =Y 0ijs’ (11.20)
Jf i=1

e Equation de continuité de la fonction d’état vectorielle :

f @)+ (Vv (@) f@i)+ V- (@) = of (@.0) (11.25)
@ Divergence vectorielle du courant de la densité de fonction d’état :
_ jf;1 jfiz jf;S
V- jf = (01,02,05) Jfa Jfa I
Jf1 Jf 2 Jf 3 (11.27)

3 3 3
— <Z aijleaz aijffbgaz aijf23>
1=1 1=1 1=1
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11.1.10 Convention de sommation d’Einstein

e Convention de sommation d’Einstein : suppression du signe ) |
On somme les indices et exposants identiques :

© Indice de colonne
@ Exposant de ligne
o Grandeurs géométriques : en dimensions 1 (vecteur) et 2 (tenseur)

@ Vecteur colonne x : représenté dans une base de R? par une colonne

@ Vecteur ligne x : représenté dans une base de R? par une ligne
€r = (ZL’l, X2, :Eg)

@ Tenseur x : représenté dans une base de R® par un tableau (matrice)
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11.1.11 Produits en coordonnées cartésiennes

© Produit scalaire d'un vecteur ligne & avec un vecteur colonne y :
y!
-y =(r1,20,23) [V? | =21yt + 229 +239° = 259 (11.12)
3
Y

e Vecteur ligne gradient V :

0 0 0
V= (3x1’ Ox2’ (9:133> = (01,02, 85)

e Divergence de la vitesse v :

1
v

V-v:(81,62,83) fU2 281’01—|—62U2—|—83’03587;Ui

’U3

o Divergence de la densité de courant vectoriel 7 :

Vg = (01,82,85) | 52 | = 014} + 0247 + 055} = 0i j
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11.1.11 Produits en coordonnées cartésiennes

@ Produit scalaire d'un tenseur x avec un vecteur colonne y :

1 1 1 1 )
Ly L9 T3 Y LY
_ 2 2 2 2 | _ 2 i
XY = x31 :1332 :1:33 y3 = aﬁgiy. (11.13)
1
Ly L9 T3 Yy LY

3 3 3 3 )

© Produit scalaire d'un vecteur ligne & avec un tenseur vy :

1 1 1
Y1 Y2 Y3 , . .
x-y=(z1,T2,73) 921 ?J22 923 = (xz Y1, Ti Yo, T yz3) (11.14)
3 3 3
Y1 Y2 Y3

o Divergence de la densité de courant tensorielle j¢
| jle jf;Q jflg o
Vojp=1(01,02,08) | Jr°y Jro Jra| = (8z'Jf 1,0iJ1 2, 0i Jy 3)
"3 "3 "3
Jf 1 Jf 2 Jf 3
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11.1.11 Produits en coordonnées cartésiennes

© Trace du produit scalaire d'un tenseur x avec un tenseur y :

1 1 1 1 1 1
$21 5522 5523 y21 y22 923
X1y =1tr 5’331 5532 5’733 931 y32 933
L7y L9 I3 Y1 Yo Y3 ( )
: : : 11.15
1 .7 1,7 1 .7
LY T Y2 T ;Y3 o
_ 2 2 2 _ J
3 .7 3 ] 3 .7
LY ;Yo T ;Y3
© Produit tensoriel d'un vecteur colonne @ avec un vecteur ligne y :
! ! U1 ! Y2 ! Y3
_ _ 2 _ 2 2 2
rRy=xy=|2"| (y1,y2,93) = | 2°y1 x°y2 2z°y3
3 3 U1 7 Y2 7 Y3
e Tenseur gradient de vitesse V v :
81 81 V1 81 V2 81 U3
V@’U EV’U = 82 (’Ul,’Uz,’U3) = 82 U1 82 V2 82 U3 (11.16)
83 (93 V1 83 V2 (93 U3
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11.2 Systeme thermodynamique : milieu continu

11.2 Systeme thermodynamique : milieu continu
11.2.1 Champs d’état et fonctions de champs d’état
11.2.2 Densités de source
11.2.3 Densités de courant
11.2.4 Equations de continuité - champs d’état
11.2.5 Théoreme du centre de masse
11.2.6 Equation de continuité de I'énergie
11.2.7 Dérivée temporelle de I'énergie
11.2.8 Equation de continuité de I'énergie interne
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11.2.1 Champs d’état et fonctions de champs d’état

@ Systeme thermodynamique : milieu continu constitué de r substances
chimiques électriquement chargées en mouvement.

@ Champs d’état :
Q p(x,t) : densité de quantité de mouvement
©Q s(x,t) : densité d'entropie
© {na(x,t)} : densités de substances chimiques ot A =1,...,r

Q ¢ (x,t) : densité de charge électrique

o Etat : { p(z.1).s (2.t). {na(@.0) }.q(@.1) } = {p.s. {na}q )

@ Fonctions de champs d’état :

Q v(p,s,{na},q) : vitesse
Q c(p,s,{na}l,q) : densité d'énergie
©Q m(s,{na},q) : densité de masse

Q u(s,{na},q) : densité d'énergie interne
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11.2.2 Densités de source

© Quantité de mouvement : premier principe (translation)

op=Y f (11.35)
ou f ' est une densité de force extérieure.

@ Entropie : deuxieme principe (évolution)

o5 >0 (11.28)
© Quantité de substance A : (réactions chimiquesa =1,...,n)
0A= ) Walaa (11.30)
a=1

ou w, est la densité de vitesse de |la réaction chimique a et v, 4 est le
coefficient stoechiométrique de la substance A dans la réaction chimique
a.

© Charge électrique : loi de conservation de la charge électrique

o, =0 (11.32)
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11.2.3 Densités de courant

© Quantité de mouvement :

(11.36)

jp:_T

ou 7 est le tenseur des contraintes mécaniques, représenté par une
matrice symétrique 3 X 3 (démontré en application 11.5.2).

e Divergence vectorielle du tenseur des contraintes :
Vijp=—-V.71
e Vecteur ligne : convention de sommation d'Einstein

’7'11 ’7'12 ’7'13

V T = (81, 62, 83) 7'21 ’7'22 ’7'23 = (31 7_’L'17 81 7'7;2, 51 Ti3) (1138)

’7'31 ’7'32 ’7'33
© Charge électrique :
J=1Jq+qv (11.34)

ou la densité de courant électrique 7 par rapport au référentiel fixe est la
somme de la densité de courant électrique convectif g v et de la densité

de courant électrique conductif j,.
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11.2.4 Equations de continuité - champs d’état

@ Quantité de mouvement : f=p et j,=—7T et o, =) f*

p+(V-v)p—V.r=>) f (11.37)J

©Q Entropie: f=s et 0,20

$+(V-v)s+V.-3s=0,20 (11.29))

@ Quantité de substance chimique A: f=n4 et 04 =>.,_| WaVaa

a=1

A+ (V-0) na+V-ja=Y  Wavaa (11.31)J

© Charge électrique : f=q et 0,=0

G+ (V-v)q+V -j,=0 (11.33) |
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11.2.5 Théoreme du centre de masse

@ Equation de continuité de la quantité de mouvement :

p+(V-v)p-V.-T=) f (11.37)
@ Relation constitutive de la mécanique :
p:m(s,{nA},q)v(p,s,{nA},q) =MmM7v (1139)

o Equation de continuité de la quantité de mvt : (11.39) dans (11.37)
mfb—l—(m—l—(V-fv) m)v:ZfeXt+V-T (11.40)

qui doit étre invariant du choix de référentiel d'inertie par invariance
galiléenne. Ainsi, le terme entre parentheses doit s'annuler, ce qui donne
I"équation de continuité de la masse :

i+ (V-v) m=0 (11.41) |

@ Théoreme du centre de masse : (11.41) dans (11.40)

mb=>Y f4+V-r (11.42)J
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11.2.6 Equation de continuité de I'énergie

@ Densité de source d’énergie : densité de puissance

:Zfext.,v

@ Equation de continuité de I'énergie :

é+(V-v)e—|—V-je:ZfeXt-v

(11.43)
f=e et o.=> f v
(11.44)J

@ Densité d’énergie : cinétique et interne

e (ps {naba) = 5o s s, naba) (11.45)

@ Dérivée temporelle de la densité d’énergie :

. Oe 86 N
€= — —m + U
(9p (9m
@ Dérivées partielles de la densité d’énergie interne : avec p=mwv
de p Oe p? v?
— = — = et — = — = — —
op m om 2 m? 2
@ Dérivée temporelle de la densité d’énergie :
1
E=v-Pp— -mv’+1u (11.46)

2
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11.2.7 Dérivée temporelle de I’énergie

@ Dérivée temporelle de la densité d’énergie :

é:v-p—§mv2+u

@ Equation de continuité de la quantité de mouvement :

1

ﬁ:—(V-v)mv+V-T+Z fex

e Equation de continuité de la masse :

m=— (V-v)m

o Dérivée temporelle : (11.37) et (11.41) dans (11.46)

(11.46)

(11.37)

(11.41)

e=1v- (— (V- v) mv—l—V-TJrZ feXt)—F%va (V-v)+au (11.47)

@ Densité d’énergie cinétique :

€E— U= —-MmMmmv

1
2

2

@ Dérivée temporelle de la densité d’énergie :

é:u—l—(V-v)(u—e)+(V-T)-v—|—Z Fot v
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11.2.8 Equation de continuité de I'énergie interne

@ Dérivée temporelle de la densité d’énergie :

=i+ (V-v)(u—e)+(V-1)-v+ ) f> v (11.48)
@ Equation de continuité de I'énergie :

e=—(V-v)e— V- jet+ Y f™ v (11.44)
o ldentification : (11.44) et (11.48)

ut+ (V- v)u+V-j3.=—(V-1) v
o ldentité vectorielle :

(V-1)-v=V-(1r-v)— 17: (V) (11.49)
@ Equation de continuité de I'énergie interne :

u+(V-v)u+V-Get+t7 -v)=7: (Vo)
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11.2.8 Equation de continuité de I'énergie interne

@ ldentité vectorielle :

(V-r)-v=V-(1t-v)— 7: (V)

© Premier terme : convention de sommation d'Einstein

7'11 7'12 7'13 ’Ul
2 2 2 2
(VT)'U: (81,82,83) T T 9 T 3 v
7'31 T32 7'33 ’U3
’Ul
— (({%7'21, 0iT's, aL'7'Z3) v? | = (ai TZj) v’
,03

@ Deuxiéme terme : convention de sommation d’'Einstein

7'11 7'12 7'13 ’U1
V. (r-v) = (0,0, 2 1%, 72 2
(T ’U)—(l, 2, 3) T1 T2 T3 v
7'31 7'32 7'33 'U3
le v)
5 . i )
— (61,82,5’3) ijj' :(97; (Tj TJJ)
73 07

J
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11.2.8 Equation de continuité de I'énergie interne

o ldentité vectorielle :

(V.-1) v=V.(1r-v)— 7: (Vo) (11.49)

© Troisieme terme : convention de sommation d’Einstein

T T 92 7'13 81
. V — t 2 2 2 82
T7: (Vo) =tr T TS T3 (v1,v2,v3)
3 3
T1 T 9 T 3 8
7'11 7'12 7'13 81 U1 81 V2 81 V3
= tr 7'21 7'22 7'23 82 V1 82 V2 82 V3 (1152)
7'31 7'32 7'33 (93 U1 83 V2 83 U3
le 8‘7 V1 le 8‘7 V2 le 8'7 V3 . .
= tr 7'2j 07 vy 7'2j 0”7 9 7'2j vz | =750 v

7_3]' 8‘7 V1 ’7_3]' 6‘7 V2 7-3j 8‘7 U3
o ldentité en composantes : convention de sommation d'Einstein

(87, Tij) Uj = 8@ (Tij ?}j) — Tij 8j V; (].].53)
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11.2.8 Equation de continuité de I'énergie interne

@ Equation de continuité de I'énergie interne :
ut+(V-v)u+V-FJet+tT -v)=7: (Vo)
@ Equation de continuité de I'énergie interne :

w4+ (V-v)u+V .35, =0, (11.54))

@ Densité de courant d’énergie interne :
Ju =27Je + T v (11.55)
@ Densité de source d’énergie interne :

oy =71: (Vo) (11.56)
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11.3 Equations d’évolution

11.3 Equations d’évolution

11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.3.8
11.3.9

Dérivée temporelle de la masse

Masse molaire

Conservation de la masse

Vitesse du centre de masse

Dérivée temporelle de la charge électrique
Charge électrique molaire

Conservation de la charge électrique

Bilan énergétique

Milieu continu sans cisaillement

11.3.10 Affinité chimique
11.3.11 Thermostatique et thermodynamique
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11.3.1 Dérivée temporelle de la masse

@ Dérivée temporelle de la masse : m (s,{n4 },q)

om . "~ Om | om |

M=t G At gy

— =0 11.59 t =0
P (11.59) e

e Equation de continuité de la masse :

m=—(V-v)m

@ Equation de continuité de la substance chimique A :

na=—(V-v)na— V-ja+ ) Wavaa

o (11.59), (11.60), (11.41) et (11.31) dans (11.57) :

(11.57)

(11.60)

(11.41)

(11.31)

(11.61)

(m— Z MRA> (V-v —I—Z 877,A (;wal/aA—V.jA> =0
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11.3.2 Masse molaire

e Equation d’évolution de la masse : (11.61)

(m— ZanAnA> (V-v —I—Z 8nA (Zwal/aA—V.jA>:O

a=1

e L'équation (11.61) doit étre satisfaite pour toute vitesse v :
. Om
m— Y ~——mng=0 (11.62)

@ La dérivée partielle de (11.62) par rap. a la densité de substance B :

om r 9%m om
_ " — 11.
on Az::l <8nA8nB na+ Orn 5AB) 0 (11.63)

@ Le 1° et le 3° terme de (11.52) s’annulent :

2
om_ _ 0 VA=1,.,r ainsi mg = _ om _ cste  (11.65)
on a

ol m4 est la masse d'une mole de substance A, appelée masse molaire.
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11.3.3 Conservation de la masse

o Densité de masse : (11.65) dans (11.62)
m = Z naAma (11.66)
A=1

@ (11.65) et (11.66) dans (11.61) :

ZmA<Z anaA—V-jA> =0 (11.67)
A=1 a=1

e Masse molaire constante: Vm,y =0 (11.68)

@ (11.68) dans (11.67) :

zn:wa (i mAVaA>—V-<zT: mAjA>:O (11.69)
a=1 A=1 A=1

o L’'équation (11.69) doit étre satisfaite pour tout j4 :

> maja=0 (11.70)
A=1
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11.3.3 Conservation de la masse

e Equation de bilan de courants :
> maja=0 (11.70)
A=1

e Equation dynamique :

Zn:wa (i mAVaA>—V-<i mAjA>:O (11.69)
a=1 A=1 A=1

@ En substituant (11.70) dans (11.69), on obtient la loi de conservation
de la masse de Lavoisier :

> Mavea=0 (11.60)
A=1

qui affirme que la réaction chimique a entre les substances chimiques A
conserve la masse.
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11.3.4 Vitesse du centre de masse

@ La densité de courant de substance A est la somme des densités de
courant convectif et conductif :

NAVA=NAV+ JA (11.72)
o Densité de quantité de mouvement : (11.66) dans (11.39) et (11.72)

T T T
p:m’v:< E mAnA>’U: E manavas — E mAjA

o Densité de quantité de mouvement : (11.70)

p:Z maAaNnNAvDVA (1173)
A=1

@ Vitesse du centre de masse de I'élément de fluide local :
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11.3.5 Dérivée temporelle de la charge électrique

o Dérivée temporelle de la charge électrique : ¢ ({n4 })

e Equation de continuité de la charge électrique :
i=—(V-v)q-V-j, (11.33)

e Equation de continuité de la substance chimique A :

na=—(V-v) nA—V-jAJrZanaA (11.31)
a=1

@ (11.31) et (11.33) dans (11.75) :
(q— ) ;fim> (V- v)

T aq n . .
+ZM<ZwayaA—V-JA>+V-3q: (11.77)
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11.3.6 Charge électrique molaire

@ L'équation (11.77) doit étre satisfaite pour toute vitesse v :
)
¢— Y H—na= (11.78)

@ La dérivée partielle de (11.78) par rap. a la densité de substance B :

r 2
ﬁ — Z ( g na + ﬁ(SAB> =0 (11.79)

87”&3 A—1 8nA8nB 877,A

@ Le 1°" et le 3° terme de (11.79) s’annulent :

=0 VA=1,..,r ainsi ga = ﬁ — cste (11.81)
8nA

ol g4 est la charge électrique d'une mole de substance A, appelée charge
électrique molaire.

e (11.81) dans (11.78) :

¢g=) naqa (11.82)
A=1
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11.3.7 Conservation de la charge électrique

@ Densité de charge électrique :
¢=) naqa (11.82)
A=1

@ Types de substances électriquement chargées :
Q ¢4 <O0: anions
@ g4 > 0 : cations

© ¢4 = 0 : substances neutres

@ (11.78) et (11.82) dans (11.77) :

ZQA(ZanaA_V'jA>+V'jq_O (1183)
A=1 a=1

@ Charge électrique molaire constante: Vg, =0 (11.84)

@ Ainsi, I'équation (11.83) peut s'écrire comme :

2’”: Wa (i ga %A) +V. (jq - i QAjA> = (11.85)

A=1

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus



11.3.7 Conservation de la charge électrique

e Equation dynamique :

i Wa (i ga %A) +V. (jq - i QAjA> = (11.85)

A=1

@ L'équation (11.85) doit étre satisfaite pour tout j :

Je= ) qaja (11.86)
A=1

@ En substituant (11.86) dans (11.85), on obtient la loi universelle de
conservation de la charge électrique :

> qavaa=0 (11.87)
A=1

qui affirme que la réaction chimique a entre les substances chimiques A
conserve la charge électrique.
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11.3.8 Bilan énergétique

. Ou., ou ou . 11
U aSS—I—Z 8nAnA+8qq (11.88)

@ La condition d'équilibre local permet de définir des champs intensifs
conjugués aux champs d'états densitaires s, ny et q :

cure 00 Ou
Q@ Température : T = 95 = B
i . _ _oU  0Ou
© Potentiel chimique : u4 = ONA — na (11.89)
s : . 0U  0Ou
© Potentiel électrostatique : p = 50 ~ 9q
@ (11.89) dans (11.88) :
w=T5+ Y pana+eqg (11.90)

A=1

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus



11.3.8 Bilan énergétique

o Dérivée temporelle de la densité d’énergie interne : u (s,{n4 },q)

TS+ZMAhA+g0q—?l=0

A=1

@ Equation de continuité de I'énergie interne :

—’iL:(V°v)u+V-ju— Oy

e Equation de continuité de I'entropie :

s=0s— (V-v)s— Vg

@ Equation de continuité de la substance chimique A :

n
a=1

@ Equation de continuité de la charge électrique :

v)na— V-ja

¢=—-(V-v)q— V-j,
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11.3.8 Bilan énergétique

o (11.54), (11.29), (11.31) et (11.33) dans (11.90) :
T<O’S—(V'v)3_ V.]s)

3 1a (Y wavaa = (Vov)na— V- ja) (11.91)
A=1 a=1

to(—(Vo)g= V4 (V- 0)ut Vg — 0, =0

o ldentités vectorielles : dérivées d’un produit de fonctions

T(V j)=V-(Tj)~jo-VT

r

Z (V-ja)=V_ <ZNAJA>—ZJA°VMA
A=1 A=1

A=1
(V- ) V'(Squ)_jq‘VSO
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11.3.9 Milieu continu sans cisaillement

e Equation dynamique : (11.91) et identités vectorielles

<u—TS— i:,uAnA—qg0> (V- v) (11.92)

A=1

+V- (ju— Tjs— Y paja— sojq> + T+ > pia (Z%%m)
a=1

A=1 A=1
T
+4s VT + Y ja-Vpa+js-Ve—o,=0
A=1
@ Milieu continu sans cisaillement : tenseur des contraintes isotrope
T— P 0 0

T:(T—p) 1= 0 T— P 0 (11'93)
0 0 T— D

ou 1 est le tenseur identité représenté par la matrice identité 3 x 3, 7 est
le frottement visqueux interne et p est la pression.

@ Densité de source d’énergie interne :

Ou:T:(V’v):tr((T—p)(V’v))I(T—p)(v-’v) (11.95)

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus



11.3.10 Affinité chimique

@ Densités de charge et de courant électriques :
q = Z qana et jq = Z ga Ja (11.86)
A=1 A=1
e Densité de puissance chimique : (11.96)
ZNA <ZanaA>—Zwa <ZNAVCLA>—ZWCLA@
A=1 a=1 a=1 A=1
e (11.86), (11.93), (11.95) dans (11.92) :

(U—T8+p— Z (NA+61A%0)”A> (V- v)

A=1
+ V. (]u - T]s _ Z (,UJA + QAQO) ]A)
A=1 (11.97)
+Tog — Z wg A (V- v)

+jS-VT+ZjA-(VMA+qAVSO) =0
A=1
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11.3.11 Thermostatique et thermodynamique

© Equation d’équilibre thermostatique : (11.97) doit étre satisfaite pour
toute vitesse

u="1s— p—l—z (,uA—FquO) N A (11.98)J
A=1

@ Equation d’évolution thermodynamique réversible : (11.97) doit étre
satisfaite pour toute densité de courant

Ju="T7s+ Z (NA - C]ASD) JA (11.99)J
A=1

© Equation d’évolution thermodynamique irréversible : (11.98) et
(11.99) dans (11.97)

1 n
Oy = T{leaAa—l_T (V- v)
“ (11.100)

+ds (=VT)+ Y ja- (— Vs qu)}
A=1
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11.4 Liens entre systemes local et global

11.4 Liens entre systemes local et global

11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.4.6
11.4.7
11.4.8
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Bilan de volume

Relation d’Euler

Bilan d’énergie interne

Premier principe de la thermodynamique

Deuxieme principe de la thermodynamique
Dissipation

Equation de continuité pour les substances chimiques
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11.4.1 Conditions d’homogénéité

@ Pour établir les principes de la thermodynamique d'un systeme global
simple, qui est homogene et non-uniforme, on intégre I'équation
d'équilibre thermostatique et les équations d'évolutions réversible et
irréversible des systemes locaux ainsi que les équations de continuité sur
le volume du systéme.

@ Homogénéité des champs scalaires : gradient nul
Q@ Champs intensifs :
VT=0 et Vwpa=0 et Ve=0 (11.107)
@ Densités de source :

Vo,=0 et Vo,=0 et Voa=0 (11.108)

@ Homogénéité des divergences des champs vectoriels : gradient nul
@ Divergence de la vitesse :
V(V-v)=0 (11.109)
@ Divergence des densités de courant :

V(V-ju)=0 e V(V-j)=0 e V(V-ji)=0
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11.4.2 Bilan de volume

@ Dérivée temporelle du volume : v=1 et v =0

V:/dV(z}+(V-v)v):/dV(V-v) (11.102)
1% 1%
@ Courant de volume :

Iy = — ]{ qs - j, = — / v (V- ) (11.103)

S 1%

o Densité de courant de volume : (11.102) et (11.103)

Jv=—1 (11.104)
e Equation de bilan de volume : (11.102) et (11.103)

V=Iy (11.105) |

@ Source de volume : nulle

Sy =0 (11.106)
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11.4.3 Relation d’Euler

e Equation d’équilibre thermostatique locale :

u(s,{nat,q)=Ts— p+ Z (114 + gap) na (11.110)
A=1

e Equation d’équilibre thermostatique globale : intégrale sur le volume

/qu:T/ st—p/ dV+Z(,LLA+qA90)/anA (11.112)
1% 1% 1% A1 1%

@ Energie interne globale :

U(S,V,{Na},Q) :/ dVu(s,{na},q)

v
@ Entropie S, nb. de moles V4 de substance A, charge électrique () :

S:/st NA:/anA Q:/qu (11.111)
1% 1% 1%

@ Relation d’Euler : équation d'équilibre thermostatique globale :

U (S, V,{Na}, Q) =TS~ pV+ Y (1a+qap) Na (11.113)J
A=1
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11.4.4 Bilan d’énergie interne

@ Equation de continuité de I'énergie interne :
u+ (V-v)u=—-V-j,+ 0, (11.54)

@ Equation de continuité de I'énergie interne : intégration sur le volume

/VdV(aJr(V-v)u):—/VdV(V-ju)+/dVau (11.117)

1%
@ Dérivée temporelle de I'énergie interne :

U:/dv(u+(v-v)u) (11.114)
1%
@ Courant d’énergie interne :
Iy = — jqf ds - j, = — / AV (V- j) (11.115)
S 1%
@ Source d’énergie interne :
YU :/ dV o, (11.116)
1%

@ Equation de bilan d’énergie interne :

U=1Iy+Xy (11.118) |
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11.4.5 Premier principe de la thermodynamique

e Equation d’évolution réversible :

Ju=T7s+ Z (MA + QAQO) JA

A=1

@ Densité de courant de chaleur :

jQ — T]s

@ Densité de courant énergétique de matiere :

T

jo =) (na+qap)ja

A=1

e Equation d’évolution réversible :

ju :jQ _|_jC

@ Courant de chaleur :

o= §
S

dS-jg = — VdV (V-30)

@ Courant énergétique de matiere :

Ie=- ¢
S

Dr. Sylvain Bréchet
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11.4.5 Premier principe de la thermodynamique

@ Equation d’évolution réversible : intégration sur la surface

IU:—%dS-ju:—]{dS-jQ—de-jC (11.124)

S S S

Courant d’énergie interne : (11.122) et (11.123) dans (11.124)

Iy = 1g + Ic (11.125))

Puissance mécanique : réversible (systeme simple)

PW:—pVZ—p/ AV (V - v) (11.126)
1%

Tenseur des contraintes : déformation réversible : 7 =0

T=-—pl ainsi 7: (Vv)=—p (V. .v) (11.128)

Puissance mécanique : (11.128), (11.56) et (11.116) dans (11.126)

PW:/VdVT: (va):/vdVau:EU (11.132)J

Premier principe de la thermodynamique : référentiel du fluide

U=1Iy+Yy =1+ Ic+ Py (11.133) |
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11.4.5 Premier principe de la thermodynamique

o Densité de courant d’énergie : (11.55) ou 7= —pl

je:ju_ T'v:ju+pv

@ Courant d’énergie : intégration sur la surface

JE:—fwyﬁz—fmgn—pf¢3v
S S S

@ Courant d’énergie interne :

Iy =~ ¢ ds-j.
S

@ Puissance mécanique : théoreme de la divergence

PW:—pVI—p/
v

o Courant d’énergie : (11.132) et (11.124) dans (11.135)

dVv (V-v):—p]{dS-'v
S

IE:IU+PW:IQ—|—I(1—|—PW

(11.134)

(11.135)

(11.124)

(11.132)

(11.138) |
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11.4.5 Premier principe de la thermodynamique

@ Equation de continuité de I'énergie :
e+ (V-v)e=—-V-j.+ o, (11.44)

@ Equation de continuité de I'énergie interne : intégration sur le volume

/VdV(é—I—(V-v)e):—/‘/dv(v.je)+/dVUe (11.144)

1%
@ Dérivée temporelle de I'énergie :

E:/ dV(é+(V-v) e) (11.143)
Vv
@ Courant d’énergie :
Iy = — ]{ is - j, = — / AV (V- j.) (11.135)
S V
@ Source d’énergie :
YE :/ dV o, :/ dV Z fot =P (11.140)
\% V

@ Premier principe : équation de bilan d'énergie

E=1Ip+Yp=1Io+Ic+ Py + P (11.146) |
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11.4.6 Deuxieme principe de la thermodynamique

e Equation de continuité de I'entropie :
$+(V-v)s=—-V - j,+ 0,

(11.54)

e Equation de continuité de I’entropie : intégration sur le volume

/dV(é+(V-v)s):—/dV(V-jS)+/dVaS (11.151)
1% 1% 1%
@ Courant d’entropie :
I = — jqf qs - jo = — / AV (V- j2) (11.148)
S 1%
@ Source d’entropie : condition d'évolution
PP :/ dVos >0 (11.150)
1%
@ Courant de chaleur :
IQ:—]{dS-jQ:—T]{dS-jS:TIS (11.149)
S S

@ Deuxieme principe de la thermodynamique :

: I
Szls—I—ES:TQ—I—ES

(11.152)J
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11.4.7 Dissipation

e Equation d’évolution irréversible : (11.100) systeme homogeéne

oy = % (i: A, wa> (11.153)

@ Source d’entropie : intégration sur le volume

1 n
Y= [ dVo, = = o | dVw, | =0 11.54
s /V o T(;A/V w) (11.54)

@ Vitesse de réaction chimique :

Qa:/ dV w, (11.155)
|4

e Source d’entropie : (11.155) dans (11.54)

1 mn
B = = <a§::1 A, Qa> >0 (11.156)J
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11.4.8 Equation de continuité pour les substances chimiques

Equation de continuité de la substance chimique A :

’fLA—I—(V-v) TLA:—V-jA—l—ZanaA (11.31)

a=1
Equation de continuité pour les substances chimiques : (11.157)

T

> ha (hAJr(V"U) nA) ==V (Z ,LLAjA> +> Wa Y JAVas
A=1 A=1

A=1 a=1
Densité de courant chimique pour des substances neutres :

jo = paja (11.158)
A=1
Affinité d’une réaction chimique a :

.Aa = — Z HAVgA (8.22)
A=1

Equation de continuité pour les substances chimiques :

T

Z A (’fLA—I—(V-U) nA) = —V - jc — ZAawa (11.159)
a=1

A=1
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11.4.8 Equation de bilan pour les substances chimiques

@ Equation de continuité pour les substances chimiques :

n

i WA (hA—I—(V-’U) nA) =—V - Jc — ZAawa (11.159)

A=1 a=1

Equation de continuité : intégration sur le volume : (11.160)

ZMA/dV(hA+(V-v)nA): /VdV (V- jo)— ZA /dea

Dérivée temporelle de la substance chimique A :

N o uaNa=Y" ,UA/ dv (nA+ (V- ) nA) (11.161)

A=1 A=1 v

Courant énergétique de matiere :

Ip = — / 4V (V - jo) (11.123)
1%

Vitesse de réaction :

Qa:/ AV w, (11.155)
\%
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11.4.8 Equation de bilan pour les substances chimiques

@ Equation de bilan pour les substances chimiques :

Z ,UANA:IC_ ZAaQa (11.162)J
A=1 a=1

@ Courant de substance A :
IA:—%dS-jA (11.163)
S
@ Densité de courant chimique pour des substances neutres :

jo =Y naja (11.158)
A=1

@ Courant énergétique de matiere :

IC:—]{dS-jC:—ZMA%dS-jA:ZMAIA (11.164)
S A=1 S A=1
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11.5 Applications

11.5 Applications
11.5.1 Accélérometre a force d’Archimede
11.5.2 Invariance galiléenne
11.5.3 Tenseur des contraintes symétrique

Dr. Sylvain Bréchet 11 Thermodynamique des milieux continus



11.5.1 Accélérometre a force d’Archimede

@ Systeme : un flotteur de densité de masse m/
est immergé dans un récipient complétement
rempli de liquide de densité de masse m ou a
m > m'. Le récipient se déplace par rapport au @
sol avec une accélération constante a. Le

liquide est au repos par rapport au récipient. "

@ Densité de force extérieure : densité de poids dans le liquide

Z fext =mg (11168)
@ Tenseur des contraintes : absence de frottement interne : 7 =0
T=-—pl ainsi V-r=—-Vp (11.128)

@ Théoreme du centre de masse : (11.128) dans (11.42)

Z fext . Vp — ma (11167)
o Gradient de pression : (11.168) dans (11.167)
Vp=m(g— a) (11.169)
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11.5.1 Accélérometre a force d’Archimede

@ Force d’Archimede : résultante des forces de
pression exercée par le liquide sur la surface S
du flotteur.

FA:/Sp(—dS) (11.170) @ —

ou dS est orienté du flotteur vers le liquide.

@ Théoreme du gradient : champ scalaire pression p

FA:—/pdS:—/VpdV (11.171)
S 1%

ou V est le volume du flotteur.
@ Gradient de pression :

Vp=m(g— a) (11.169)
o Force d’Archimede : (11.169) dans (11.171) masse homogene m

Fr=—-m(g— a) /V aVv (11.172)
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11.5.1 Accélérometre a force d’Archimede

o Force d’Archimede : (11.172) remise en forme

Fr=—-—mV(g— a) (11.173)J

Dans un fluide accéléré, i.e. a # 0, la force d'Archimeéde n'est pas
verticale : elle est oblique et orientée le long du fil.

@ Principe d’Archimede : cas particulier : a =0

Fpr=—mVg (principe d'Archimeéde) (11.174)J

Dans un fluide au repos, i.e. a = 0, la force d'Archiméde est verticale et
orientée vers le haut, et sa norme est égale au poids du fluide déplacé.

@ Accélérometre : on construit un accélérometre en attachant un flotteur
de densité de masse m’ a un fil qui est retenu au fond d'un récipient
complétement rempli de liquide de densité de masse m. Le récipient se
déplace par rapport au sol avec une accélération constante a. Le liquide
et le flotteur sont au repos par rapport au récipient.
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11.5.1 Accélérometre a force d’Archimede

@ Objet : flotteur homogéne de masse M’

@ Forces extérieures :
@ Poids: M'g
Q@ Tension: T
© Force d’Archimeéde : F4

@ Théoreme du centre de masse : flotteur
Mg+ Fs+T=Ma

@ Masse : flotteur homogene de densité m/
M =m'V

@ Force d'Archimede :
Fy=—-—mV(g— a)

e Tension : dans le fil (11.175) ou m’ <m

T=-M(g—a)— Fa=(m—-m)V(g— a)
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11.5.1 Accélérometre a force d’Archimede

@ Tension : dans le fil

T=(m-—m")V(g— a) (11.177)
e Grandeurs vectorielles : (11.179)

Q Tension: T'=T,2+7T,9y

Q@ Accélération: a=ax

© Champ gravitationnel : g=—g79y
@ Tension : composantes

T.=—(m—m")Va

11.180
T,=—(m—-—m")Vyg ( )
@ Angle d’inclinaison du fil :
1 .
tana = -2 = = ainsi a = arctan (ﬁ) (11.181)
Iy, g g

Le flotteur s’incline vers la droite si @ > 0 et vers la gauche si a < 0.
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11.5.1 Expérience - Accélérometre

|
-

© Un ballon rempli d"hélium, fixé au bout d'un fil, est attaché au sol d'un
chariot. En accélérant le chariot vers la droite, il subit une force
d'Archimede orientée obliquement vers la droite le long du fil. En freinant
le chariot, il s'incline vers la gauche, car son accélération devient
négative. En faisant tourner uniformément le chariot autour d'un axe fixe,
la force d’Archiméde est orientée obliquement vers |'intérieur du virage en
raison de |'accélération centripete. L'angle d’'inclinaison du fil permet de
déterminer 'accélération du chariot.

© Une balle en plastique est attachée par un fil au fond d'un récipient
rempli d’eau. Lorsqu’on accélere le récipient, elle subit une force
d'Archiméde orientée le long du fil dans le sens du déplacement.
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11.5.2 Invariance galiléenne

@ Systeme : fluide homogeéne et uniforme
Q@ Référentiel d’inertie R : vitesse du fluide vg = cste
@ Référentiel du fluide R’ : fluide au repos

o Transformation de Galilée : R (x,t) — R (x',t')
' =x— vyt
t'=t
@ Fonction d’état : grandeur scalaire extensive
O Référentiel d’inertie R : F (1)
@ Référentiel du fluide R’ : F (¢)

@ Densité de fonction d’état : grandeur scalaire densitaire
O Référentiel d’inertie R : [ (x,1)
@ Référentiel du fluide R’ : [ (x',t)
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11.5.2 Invariance galiléenne

Dérivée temporelle de la fonction d’état : référentiel d'inertie R

F (1) :/V()dV(a:) (01 f (@.t) + (w0 - 9) f (w.1) ) (11.183)
t

Dérivée temporelle de la fonction d’état : référentiel du fluide R’

B () = /V L V@) o g (11.184)
o

Invariance galiléenne : la coordonnée temporelle est invariante par
transformation de Galilée. Ainsi, la dérivée temporelle de la fonction
d’'état est indépendante du référentiel,

F(t)=F () (11.185)
Loi de transformation : (11.183) - (11.185) identification des intégrants

Op [ (2", 1) =0 f (x,t) + (vg - V) [ (1) (11.186)
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11.5.2 Invariance galiléenne

@ Référentiel R’ : en translation a vitesse vy par rap. au référentiel R
Op f(x',t') =0 f(x,t) + (vo- V) f(,1) (11.186)
@ Référentiel R : en translation a vitesse — vy par rap. au référentiel R’
O f (,t) = Op f (2, 1') = (vo - V') f (', 1) (11.187)
o Invariance galiléenne du gradient : (11.186) + (11.187)

V' t)=V f(x,t) (11.188)J

o Dérivée temporelle : transformation de Galilée (11.182)
v =v— vy ainsi vo=v— v (11.189)

o Loi de transformation : (11.189) dans (11.186)

3t/ f ($,,t/) — at f (w,t) + ((’U — ’U/) . V) f (w,t)
@ Loi de transformation : remise en forme

Oy [ (@) + (v - V') f (@ ) =0, f (@,0) + (v- V) f(x,t) (11.190)
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11.5.2 Invariance galiléenne

o Loi de transformation :
Op f (') + (v - V') f(z',t') =0 f (x,t) + (v-V) f(x,t) (11.190)
o Dérivée temporelle covariante : référentiel d'inertie R (11.21)

fla,t) =0 f(z,t) + (v(z,t)- V) f (a,1)

o Dérivée temporelle covariante : référentiel du fluide R’ (11.21)

f @& t) =0 f (', 1) + (v (', 1) - V') [ (2", 1)
e Invariance galiléenne de la dérivée temporelle covariante : (11.190)

ft) = f(z,1) (11.191) |

@ Invariance galiléenne : les lois non-relativistes de la mécanique
classique, de la mécanique des fluides, de la thermodynamique et de la
mécanique quantique sont invariantes par transformation de Galilée.
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11.5.3 Tenseur des contraintes symétrique

@ Densité de moment cinétique :

L=rXxp (11.192))

e Equation de continuité : moment cinétique

0+ (V-0)L+V - jg=o0y (11.193) |

@ Dérivée temporelle : moment cinétique

b=7TXp+rXp=rXp (11.194)

e Equation de continuité : quantité de mouvement

e Equation de continuité : moment cinétique (11.37) dans (11.194)

é%—(V-v)E—fr><(V-7'):z:r><feXt (11.195)
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11.5.3 Tenseur des contraintes symétrique

e Equation de continuité : moment cinétique

C+ (V- -0)L+V  jp=o0y (11.193)

é%—(V-fv)E—’l°><(V-T):z:frxfext (11.195)
@ Densité de source : moment cinétique

oe=) TXxfM=rx ) f*=rxo, (11.198)
@ Densité de courant : moment cinétique

Je=TXjp=—"TXT (11.199)
e Divergence de la densité de courant : (11.193) et (11.195)

Vije=—rx(V-1) (11.200)
@ Divergence de la densité de courant :

V.je=-V-(rxr) (11.197)
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11.5.3 Tenseur des contraintes symétrique

o Divergence de la densité de courant : (11.200) et (11.197)

V-rxt)=rx (V. 1) (11.201)

@ Premier terme : convention de sommation d'Einstein avec 0,/ = &)
V. (rxrT)= (8k (51Z r'T ) Ok (8% r'T ) Ok (537;j TiTkj)>
= (517;j Ty €97 T, €57 Tij) (11.202)
+ (512-*7 r O, T, ey T O TV €57 1 OO Tkj)
@ Deuxiéme terme : convention de sommation d'Einstein
x (V-T) = (slij r O, T, g T OL T, €47 T O ’rkj) (11.203)

o Ildentité en composantes : (11.201) convention de sommation

(21 7 227 70 237 75) = (0,0, 0) (11.204)
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11.5.3 Tenseur des contraintes symétrique

o ldentité en composantes : convention de sommation d'Einstein

(21 7 227 70 237 75) = (0,0, 0) (11.204)

Jr =24 J
@ Composantes du tenseur antisymétrique de Levi-Civita :
E19° = €93 = 5,7 = 1 et 13 = E91° = €39" = — 1 (11.205)
o Identité en composantes : (11.205) dans (11.204)
(7'23 — 73, T = T, T — 7'21) = (0, 0, 0) (11.206)

@ Tenseur des contraintes symétrique :

712 — 7'21 et 7'23 =7 et T =73 (11.207))
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